Reinforcement Learning in Board Games

GEORGE TUCKER
Reinforcement learning in board games
- Imran Ghory
- 2004

Surveys progress in last decade
Suggests improvements
Formalizes key game properties
Develops a TD-learning game system
Why board games?

- Regarded as a sign of intelligence and learning
 - Chess
- Games as simplified models
 - Battleship
- Existing methods of comparison
 - Rating systems
What is reinforcement learning?

- **After a sequence of actions get a reward**
 - Positive or negative
- **Temporal credit assignment problem**
 - Determine credit for the reward
 - Temporal Difference Methods
 - TD-lambda
History

- Basics developed by Arthur Samuel
 - Checkers
- Richard Sutton introduced TD-lambda
- Gerald Tesauro creates TD-Gammon
- Chess and Go
 - Worse than conventional AI
History

- Othello
 - Contradictory results
- Substantial growth since then
- TD-lambda has potential to learn game variants
Conventional Strategies

- Most methods use an evaluation function
- Use minimax/alpha-beta search
- Hand-designed feature detectors
 - Evaluation function is a weighted sum

- So why TD learning?
 - Does not need hand coded features
 - Generalization
Temporal Difference Learning

\[\text{Output} = \sum_{k=1}^{H} f \left(\sum_{j=1}^{N} I_{j,k} W_j^I \right) W_k^O \]

- \(N \) is the number of input nodes.
- \(H \) is the number of hidden nodes.
- \(f() \) is our non-linear function.
Temporal Difference Learning

\[\Delta W_t = \alpha \sum_{k=1}^{t} \lambda^{t-k} \nabla_w Y_k d_t \]

t is time (in our case move number).
T is the final time (total number of moves).
\(Y_t\) is the evaluation of the board at time \(t\) when \(t \neq T\).
\(Y_T\) is the true reward (i.e. win, loss or draw).
\(\alpha\) is the learning rate.
\(\nabla_w Y_k\) is the partial derivative of the weights with respect to the output.
\(d_T\) is the temporal difference.
Disadvantage

- Requires lots of training
- Self-play
 - Short-term pathologies
 - Randomization
TD Algorithm Variants

- **TD-Leaf**
 - Evaluation function search

- **TD-Directed**
 - Minimax search

- **TD-Mu**
 - Fixed opponent
 - Use evaluation function on opponent’s moves
Many improvements
- Sparse and dubious validation
- Hard to check

Tuning weights
- Nonlinear combinations
- Differentiate between effective and ineffective

Automated evolution method of feature generation
- Turian
Important Game Properties

- **Board Smoothness**
 - Capabilities tied to smoothness
 - Based on the board representation

- **Divergence rate**
 - Measure how a single move changes the board
 - Backgammon and Chess – low to medium
 - Othello – high

- **Forced exploration**

- **State space complexity**
 - Longer training
 - Possibly the most important factor
Importance of State space complexity
Training Data

- Random play
 - Limited use

- Fixed opponent
 - Game environment and opponent are one

- Database play
 - Speed

- Self-play
 - No outside sources for data
 - Slow
 - Learns what works

- Hybrid methods
Improvement: General

- Reward size
 - Fixed value
 - Based on end board
- Board encoding
- When to learn?
 - Every move?
 - Random moves?
- Repetitive learning
- Board inversion
- Batch learning
Improvement: Neural Network

- Functions in Neural Network
 - Radial Basis Functions
- Training algorithm
 - RPROP
- Random weight initialization
 - Significance
Improvement: Self-play

- **Asymmetry**
 - Game-tree + function approximator

- **Player handling**
 - Tesauro adds an extra unit
 - Negate score (zero-sum game)
 - Reverse colors

- **Random moves**
 - Algorithm

- **Informed final board evaluation**
Evaluation

- Tic-tac-toe and Connect 4
 - Amenable to TD-learning
 - Human board encoding is near optimal
- Networks across multiple games
 - A general game player
 - Plays perfectly near end game
 - Randomly otherwise
 - Random-decay handicap
 - % of moves are random
 - Common system
Random Initializations

- Significant impact on learning
Inverted Board

- Speeds up initial training
Random Move Selection

- More sophisticated techniques are required
Reversed Color Evaluation

The graph shows the percentage of games won over the number of training games for both control and reverse color agent conditions. The percentage of games won increases over time, with the reverse color agent condition showing a slightly higher percentage compared to the control condition.
Batch Learning

- Similar to control
Repetitive learning

- No advantage
Informed Final Board Evaluation

- Extremely significant
Conclusion

- Inverted boards and reverse color evaluation
- Initialization is important
- Biased randomization techniques
- Batch learning has promise
- Informed final board evaluation is important