1. Prob. 10, p. 683 Hein

2. Prove the following improved pumping lemma. Let \(L \) be any regular language. Then there exists an \(n \) such that for any \(x \) in \(L \), for any way of writing \(x \) as \(z_1z_2z_3 \) with \(|z_2| \geq n \), there exists strings \(w_1 \), \(w_2 \), and \(y \) such that \(w_1yw_2 = z_2 \), \(|w_1y| \leq n \), \(|y| > 0 \), and the string \(z_1w_1y^kw_2z_3 \) is in \(L \) for all \(k \geq 0 \).

3. Which of the following languages over \(A=\{a,b\} \) are regular? Prove your answer. (Hint: You may find the improved pumping lemma particularly helpful for at least one of these problems.)
 a. \(\{a^{3n}\mid n \geq 1\} \)
 b. \(\{a^ib^ka^k \mid i > j > k\} \)
 c. \(\{a^ib^ka^k \mid i+j+k \text{ is even}\} \)
 d. \(\{xwx^R \mid x \neq \epsilon\} \) where \(x^R \) denotes the string \(x \) in reverse order
 e. \(\{x \mid x=x^R\} \)
 f. \(\{xx^Rw \mid x \neq \epsilon\} \)

4. Let \(L \) be a regular language. Which of the following are also regular? Prove your answer.
 a. \(L^R=\{x \mid x^R \in L\} \)
 b. \(\frac{1}{2} L = \{x \mid \exists y \mid |y|=|x| \text{ and } xy \in L\} \)
 c. \(\{x \mid xx^R \in L\} \)
 d. \(\{xz \mid \exists y \mid |y|=|x|=|z| \text{ and } xyz \in L\} \)

5. Prove the following theorem.
 Let \(M \) be a finite automaton with \(n \) states. Then \(L(M) \) is
 i. nonempty if and only \(M \) accepts a string of length less than \(n \)
 ii. infinite if and only if \(M \) accepts a string of length \(m \) where \(n \leq m \leq 2n \).

EXTRA CREDIT:
Let \(L \) be a regular language. Prove that \(\text{Sqrt}(L) = \{x \mid \exists y \mid |y|=|x|^2 \text{ and } xy \in L\} \) is regular.