Derivatives, States, and Languages

Robert M. Keller

12 October 2008

We previously introduced the concept of derivatives of regular expressions. For any regular expression R and any letter σ, the derivative R/σ can be computed recursively with a finite set of rules:

$\emptyset/\sigma = \emptyset$	$(R+S)/\sigma = (R/\sigma + S/\sigma)$
$\lambda/\sigma = \emptyset$	$(RS)/\sigma = (R/\sigma)S$, if $\lambda \notin R$
$\sigma/\sigma = \lambda$	$(RS)/\sigma = (R/\sigma)S + S/\sigma$, if $\lambda \in R$
$\sigma/\sigma' = \emptyset$ if $\sigma \neq \sigma'$	$(R^*)/\sigma = (R/\sigma) R^*$

We also showed that the states of a DFA accepting the language denoted by R can be constructed using the derivatives as its states, provided there is a means of identifying whether or not two such derivatives are equivalent. (This can be done, but it is not totally obvious that it is a complete method.) On the other hand, it is easy to determine whether or not $\lambda \in R$ for any R.

We now generalize the derivative concept to derivatives with respect to strings rather than just symbols. If Σ is an alphabet, let Σ^* stand for the set of all (finite) strings with letters in the alphabet. Define the derivative R/x for any $x \in \Sigma^*$ as follows:

- R/σ for $\sigma \in \Sigma$ is as given by the rules in the table
- $R/\lambda = R$
- $R/(x\sigma) = (R/x)/\sigma$, recursively

Here we have taken liberty in equating a string with one letter with the letter itself, for convenience.

By a language over Σ, we mean any set of strings, i.e. any subset of Σ^*. For example, each regular expression represents a language, and there is a DFA accepting such a language. A regular language is one that is representable by a regular expression, or equivalently, accepted by a DFA.

There are non-regular languages, for example

$$\{0^n1^n \mid n \in \mathbb{N}\}$$
with \(\mathbb{N} \) being the set of natural numbers \(\{0, 1, 2, 3, \ldots \} \) and \(\sigma^n \) representing \(n \) copies of \(\sigma \). This fact is proved below.

We now generalize derivatives to languages in general. If \(L \) is a language and \(x \in \Sigma^* \), define

\[
L/x = \{ y \in \Sigma^* | xy \in L \}
\]

Note that \(L/x \) is similar to a derivative, but there is not necessarily a mechanical way to compute it, as we haven’t said how \(L \) is represented. If \(L \) is represented by a regular expression \(R \), then \(L/x \) can be computed as \(R/x \) for any given \(x \), according to the rules above.

Notice that it is possible that \(L/x_1 = L/x_2 \) even when \(x_1 \neq x_2 \). In fact, if \(L \) is regular, then there is only a finite set of possible sets \(L/x \) as \(x \) ranges over \(\Sigma^* \). The possible values of \(L/x \) correspond to the states of the smallest DFA accepting \(L \). Hence we are justified in calling the sets \(L/x \) states.

The definition of \(L/x \) works for any language \(L \), not just regular ones. We can think of the sets \(L/x \) as \(x \) ranges over \(\Sigma^* \) as the abstract states of the language \(L \).

Theorem (due to Myhill and Nerode)

\(L \) is a regular language iff the set of abstract states of \(L \) is finite.

We say that two strings \(x_1 \) and \(x_2 \) are equivalent w.r.t. \(L \) provided that \(L/x_1 = L/x_2 \). We can apply the Myhill-Nerode theorem to show that certain languages are not regular. All we need to do is identify an infinite set of strings \(\{x_0, x_1, x_2, \ldots \} \) such that no pair of the strings are equivalent.

Example: This language is not regular:

\[\{0^n1^n | n \in \mathbb{N} \} \]

Try to find the infinite set of inequivalent pairs. How do you demonstrate they are inequivalent?

Example: This language is regular:

\[\{ x \in \{0, 1\}^* | x \text{ is a multiple of 3 in binary, MSB first} \} \]

What is the set of representatives of the equivalence classes?