1. Convert the following NFA to a DFA using the algorithm given in class.
2. Convert the NFA in problem 1 into a regular expression using the algorithm described in class. Show your work.
Eliminate old start state

Eliminate states next to start state
3. Prove the following *improved* pumping lemma. Let L be any regular language. Then there exists an n such that for any x in L, for any way of writing x as $z_1z_2z_3$ with $|z_2| \geq n$, there exists strings w_1, w_2, and y such that $w_1yw_2 = z_2$, $|w_1y| \leq n$, $|y| > 0$, and the string $z_1w_1y^kw_2z_3$ is in L for all $k \geq 0$.

Diagram:

```
Eliminate states next to start state

ab(ab)* + aa(ba)*
```
Suppose L is regular. Then there is a DFA, $M=(Q,A,\delta,q_0,F)$ accepting L. Assume M has n states. Suppose $x=z_1z_2z_3$ is a string in L where $|z_2|\geq n$. Let $q_0=\delta^*(q_0,z_1)$ and let q_1, q_2, \ldots, q_n be the states entered while reading the first n symbols of z_2. Since M only has n state, the sequence q_0,\ldots,q_n must include some state twice. Assume $q_i=q_{i+j}$. Let w_1 be the prefix of z_2 with length i. Let y be the next j symbols of z_2. And let w_2 be the remainder of z_2. Note that y labels the loop through state $q_i=q_{i+j}$. This loop can be eliminated or repeated and the resulting path is still an accepting path. Therefore the string $z_1w_1yw_2z_3$ is in L for all $k\geq 0$.

4. Which of the following languages over $A=\{a,b\}$ are regular? Prove your answer. (Hint: You may find the improved pumping lemma particularly helpful for at least one of these problems.)

a. $\{a^{3n} \mid n\geq 1\}$
 This language is regular. It is generated by $aaa(aaa)^*$.

b. $\{a^ib^ia^k \mid i>j>k\}$
 Suppose this language is regular. Consider the string $x=a^{n+1}b^na^{-1}$, where n is provided by the pumping lemma. This string is in the language. By the pumping lemma we can write x as $a^ia^{-i}a^jb^nba^{-j}$ for some $i+j\leq n$ and $j>0$ such that $a^ia^{-i}a^jb^nba^{-j}$ is in the language for all $k\geq 0$. When $k=0$, we get the string $x'=a^{n+1-j}b^na^{-j}$. Since $j>0$, x' is not in the language, which is a contradiction. Therefore this language is not regular.

c. $\{a^ib^ia^k \mid i+j+k \text{ is even}\}$
 This language is regular. It is generated by $(aa)^*(bb)^*(aa)^* + a(aa)^*b(bb)^*(aa)^* + a(aa)^*(bb)^*a(aa)^* + (aa)^*b(bb)^*a(aa)^*$.

d. $\{xwx^R \mid x,w \text{ are in } A^* \text{ and } x\neq\varepsilon\}$ (Note: x^R denotes the string x in reverse order)
 This language is regular. It is generated by $a(a+b)^*a + b(a+b)^*b$.

e. $\{x \mid x=x^R\}$
 Suppose this language is regular. Consider the string $u=a^nb^na$, where n is provided by the pumping lemma. This string is in the language. By the pumping lemma we can write u as $a^ia^nb^na$ for some $i+j\leq n$ and $j>0$ such that $a^ia^nb^na$ is in the language for all $k\geq 0$. When $k=0$, we get the string $u'=a^{n-j}b^na$. Since $j>0$, u' is not in the language, which is a contradiction. Therefore this language is not regular.

f. $\{xx^Rw \mid x,w \text{ are in } A^* \text{ and } x\neq\varepsilon\}$
 Suppose this language is regular. Consider the string $u=(ab)^n(ba)^n$, where n is provided by the improved pumping lemma. This string is in the language. By the improved pumping lemma we can write u as
Let L be a regular language. Which of the following are also regular? Prove your answer.

a. $L^R = \{ x | x^R \in L \}$

This language is regular. Let $M=(Q,A,\delta,q_0,F)$ be a DFA accepting L. We’ll construct an NFA M^R such that $L(M^R)=L^R$.

The states of M^R are $Q \cup \{q_R\}$, where q_R is a new state and also the start state of M^R. The only final state of M^R is q_S; i.e. the final state in M. For every transition $\delta(q,a)=q'$ in M there is a reverse transition $\delta_R(q',a)=q$ in M^R. In addition there are ε-transitions from the start state q_R of M^R to every q in M^R such that q is a final state in M.

Claim: $L^R=L(M^R)$.

\Rightarrow Suppose x^R is in L^R. Then x is in L and there is an accepting path $q_Sq_1q_2\ldots q_m$ in M. By construction, $q_m\ldots q_2q_1q_S$ is a path in M^R labeled x^R. Since q_m must be a final state in M, there is an ε-transition in M^R from q_R to q_m. Since q_S is a final state in M^R, $q_Rq_m\ldots q_2q_1q_S$ is an accepting path for x^R in M^R.

\Leftarrow Suppose x^R is accepted by M^R. Then there is some accepting path $q_Rq_1q_2\ldots q_mq_S$. By the construction $q_Sq_m\ldots q_2q_1$ must be a path labeled x in M. Since there is an edge from q_R to q_1 in M^R, q_1 must be a final state in M. Since q_S is the start state of M, this path accepts x. Thus x is in L and x^R is in L^R.

b. $\frac{1}{2} L = \{ x | \exists y | |y|=|x| \text{ and } xy \in L \}$

This language is regular. Let $M=(Q,A,\delta,q_0,F)$ be a DFA recognizing L.

Let q be any state in M. Consider the languages $L_{q,0} = \{ x | \delta^*(q_0,x)=q \}$ and $L_{q,1} = \{ x | \text{ for some } y, |y|=|x|, \delta^*(q,y) \in F \}$. Since regular languages are closed under finite union and finite intersection, it follows from Claims 1-3 that $\frac{1}{2} L$ is regular.

Claim 1: $L_{q,0}$ is regular.
Claim 2: $L_{q,1}$ is regular.

Claim 3: $\frac{1}{2} L = \bigcup_{q \in Q} (L_{q,0} \cap L_{q,1})$

Proof of Claim 1: This language is recognized by the DFA $(Q,A,\delta,q_0,\{q\})$.

Proof of Claim 2: Consider the NFA $M_{q,1} = \{Q,A,\chi,q,F\}$ where $\chi(q,a) = \{q_j \mid \exists b \in A, \delta(q,b) = q_j\}$. Note that M is a DFA and has no ϵ-transitions. The construction of $M_{q,1}$ did not introduce an ϵ-transitions. So neither M nor $M_{q,1}$ have any ϵ-transitions.

It is easy to see that $q' \in \chi^*(q,x)$ iff there is a path of length $|x|$ from q to q' in M. (Note this would not hold if either machine had ϵ-transitions.) We omit the obvious proof by induction on $|x|$.

It follows that $L_{q,1} = L(M_{q,1})$.

Proof of Claim 3: This is obvious from the definitions.

c. $\{x \mid xx^R \in L\}$

This language is regular. Let $M=(Q_M,A,\delta_M,q_s,F_M)$ be a DFA that recognizes L.

Let q be any state in M and consider the languages $L_{q,0} = \{x \mid \delta^*_M(q_s,x) = q\}$ and $L_{q,1} = \{x \mid \delta^*_M(q,x^R) \in F\}$. Since regular languages are closed under finite intersection and finite union, it follows from Claims 1-3 that this language is regular.

Claim 1: $L_{q,0}$ is regular.
Claim 2: $L_{q,1}$ is regular.

Claim 3: $\{x \mid xx^R \in L\} = \bigcup_{q \in Q} (L_{q,0} \cap L_{q,1})$

Proof of Claim 1: This language is recognized by $(Q_M,A,\delta_M,q_s,\{q\})$.

Proof of Claim 2: To see this, consider the reverse of the DFA (Q_M,A,δ_M,q,F_M); i.e. use the construction procedure described in the solution to 1a. This machine accepts strings that label paths from a final state in M to the state q, but this is exactly $L_{q,1}$.

Proof of Claim 3:
Suppose x is $\{x \mid xx^R \in L\}$. Then $xx^R \in L$. Assume $\delta_M^*(q_s,x) = q$. Then $x \in L_{q,0}$. Also, since $\delta_M^*(q_s,xx^R) \in F$, it must be the case that $\delta_M^*(q,x^R) \in F$. Therefore x is in $L_{q,1}$. Thus x is in $\cup_{q \in Q}(L_{q,0} \cap L_{q,1})$.

<=x is $\cup_{q \in Q}(L_{q,0} \cap L_{q,1})$. Then for some state q in M, $x \in \{x \mid \delta_M^*(q_s,x) = q\} \cap \{x \mid \delta_M^*(q,x^R) \in F\}$. Thus there is a path from q_s to q in M with label x and a path from q to some final state in M labeled x^R. The concatenation of these paths is an accepting path for xx^R. Thus xx^R is in L.

d. $\{xz \mid \exists y \mid |y|=|x|=|z| \text{ and } xyz \in L\}$

This is not, in general, regular.

Proof: Let L be the regular language over $\{a,b,#\}$ generated by $a^*#b^*$. Let $L' = \{xz \mid \exists y \mid |y|=|x|=|z| \text{ and } xyz \in L\}$. Notice that $L' = \{w \mid w \in L \text{ and } |w| \text{ is even}\} \cup \{a^ib^i\}$. If L' is regular then so is $L'-L = \{a^ib^i \mid i>0\}$. But this set is clearly not regular, so neither is L'.