Partitioning & Divide-and-Conquer Strategies
Divide-and-Conquer

- Divide problem into 2 parts
- Sub-divide the parts, etc.
- Continue until?
 - All processors occupied
Divide-and-Conquer

- Divide problem into 2 parts
- Sub-divide the parts, etc.
- Continue until?
 - All processors occupied
 - Remaining problem not large enough to sub-divide (to approach cost-optimality)
Divide-and-Conquer

- Divide problem into 2 parts
- Sub-divide the parts, etc.
- Continue until?
 - All processors occupied
 - Remaining problem not large enough to sub-divide (to approach cost-optimality)
 - Sufficient precision achieved
Sufficient-Precision Example

- Adaptive quadrature:
 - Like numeric integration problem discussed earlier
 - Instead of a fixed number of sub-divisions, divide where function is “less flat”.

Adaptive Quadrature

Sub-divide as long as the difference C is significant.
False Termination Possibility

C is 0 since triangle is flat, but we shouldn’t stop yet.
Divide & Conquer in rex

Primitive: sow

- Starts a parallel *thread* to evaluate an expression
- Returns a *seed* (aka *future*): an object that can be handled while its result is being computed

rex > x = sow(expensiveFunction(args));
Task Generation = sow + recursion

// parallel factorial, for illustration only

pfac(N) = product(1, N);

product(M, N) => M > N ? 1;

product(M, N) =>
 H = (M + N) / 2, // midpoint
 K = SOW(product(M, H)), // lower half
 L = product(H+1, N), // upper half
 K * L; // result
Parallel factorial Execution
Grain-size control

\[
\text{pfac}(N, \text{pieces}) =
\begin{cases}
N < \text{pieces} \?
\text{fac}(1, N) : \text{product}(1, N, \text{pieces}); \\
\end{cases}
\]

\[
\text{product}(M, N, \text{pieces}) \Rightarrow
\begin{align*}
\text{pieces} &\leq 1 \? \text{fac}(M, N); & \quad \text{// use built-in} \\
H & = (M + N) / 2, & \quad \text{// midpoint} \\
K & = \text{SOW}(\text{product}(M, H, \text{pieces}/2)), & \quad \text{// lower half} \\
L & = \text{product}(H+1, N, (\text{pieces}+1)/2), & \quad \text{// upper half} \\
K \times L; & \quad \text{// result}
\end{align*}
\]
Execution with Grain Control

Larger grain leaves, computed sequentially
Parallel Mapping in rex

\[
\text{pmap}(F, [x_0, x_1, x_2, x_3, \ldots]) \Rightarrow \\
[F(x_0), F(x_1), F(x_2), F(x_3), \ldots]
\]

evaluated concurrently in different threads
Natural Divide-and-Conquer Examples

- **Sorting:**
 - Bucket sort
 - Merge sort
 - Quicksort
 - Sorting networks (later)

- **Tree search:**
 - Looking for a node satisfying a certain property
 - Oct-trees: maybe represent 3-d objects or images
A bucket receives numbers in a pre-specified range.

p processors

Small buckets

Pour small buckets together

Large buckets

Sort contents of buckets independently

Unsorted Numbers

Sorted Numbers

Each processor does a bucket sort on a subset of the numbers.

The small buckets are "poured together.

The large buckets are sorted.
Merge Sort
Quicksort
N-body Problem

N bodies went into a bar ...
N-Body Computation

- Simulate movement of N bodies with point mass m_1, m_2, …

- “Point mass” means the bodies are approximated as single points with the given mass.

- Each pair of bodies are attracted by gravitational force of magnitude:
 \[F = G \frac{m_i m_j}{d^2} \]

- where d is distance between the points.
Variations

- Charged particles, coulomb force
- Molecular dynamics, particles are atoms
- Fluid dynamics, particles are droplets
Knowing the acceleration, we can compute the change in vector velocity for a small time-step.

Knowing the vector velocity, we can compute the new position for a small time-step.
N-Body Computation

- Force is mass x acceleration.
- Acceleration is force/mass.
- Acceleration is also change in velocity.
- So the net acceleration of the points can be obtained by:
 - Computing for each point i, the vector sum over all other points j of
 \[G \frac{m_j \cdot (x_j - x_i)}{d^3} \]
 to account for \(x_j - x_i \) in numerator.
N-body: Euler’s Method

- The computation of the acceleration for a single point is $O(N)$.

- The computation for N points is $O(N^2)$.

- This computation must be repeated each time step.

- For large N, this can be significant.
N-body: Euler’s Method

- Each point’s accelerations can be computed independently of the others.

- Is this not a pleasantly-parallel problem?

- Actually is an embarassingly less-parallel problem, because a significant *algorithmic* speedup is possible.
Barnes-Hut Algorithm for the N-body problem

If a cluster of bodies is a long distance away from a given point, the effect of the entire cluster on the point is **well-approximated by a composite mass** located at the center of mass of the cluster.
Barnes-Hut Algorithm
(Nature, 324, December 1986)

Adaptively divide space up into an oct-tree (3D) or quad-tree (2D). Stop when a cell contains 0 or 1 point masses.
Assumption

- In the following, we make the assumption that the points are distributed evenly enough that the height of the quad- or oct-tree is bounded by $\log N$.

- There might be some fixed precision, b, of bits that are used to index the subtrees, in which case $\log N$ could be replaced with b.
Barnes-Hut Algorithm

Each cell is approximated, for distant points, by the contained mass located at its center of gravity. A criterion is needed for determining what is distant.

Let d be the dimension of one side of a box. Let r be the distance of this point to the centroid of the box. The smaller d/r is, the less error in this approximation.
Barnes-Hut Algorithm

The smaller \(\frac{d}{r} \) is, the less error in this approximation. For an arbitrary point and box, \(\frac{d}{r} \) may be too large.

We generally must sub-divide the boxes (walk down the tree) until \(\frac{d}{r} \) becomes acceptable, then use the approximation on that box. Computing the net acceleration is thus recursive.
Barnes-Hut Algorithm

- The acceptability criterion is called the MAC: Multipole Acceptability Criterion.

- Recommended value is $d/r < 1/\sqrt{3} = 0.57735$.

- Many other criteria exist.
On the preceding slides we indicated how the accelerations can be computed for one state. The particles will be in different positions in the next time step. Therefore the tree might need to be reconstructed on every time step.
Complexity of One Time-Step of Barnes-Hut Algorithm

- The height of the tree was assumed to be $O(\log N)$.

- The number of steps to compute the tree, including the centroids of each sub-box, will be $O(N \log N)$.

- The cost of computing the acceleration on one particle is $O(\log N)$.

- Therefore the total cost of one time step is $O(N \log N)$.
Justification for Force-Computation Bound

Sample Barnes-Hut Force calculation
For particle in lower right corner
Assuming theta > 1

Number of cells examined = $3 \times \text{depth}$ of point
$\in O(\log N)$
Pseudo-code for tree construction

```
procedure QuadtreeBuild
  Quadtree = {empty}
  For i = 1 to n  ... loop over all particles
    QuadInsert(i, root)  ... insert particle i in quadtree
  end for
  ... at this point, the quadtree may have some empty leaves, whose siblings are not empty
  Traverse the tree (via, say, breadth first search), eliminating empty leaves

procedure QuadInsert(i, n)
  ... Try to insert particle i at node n in quadtree
  ... By construction, each leaf will contain either 1 or 0 particles
  if the subtree rooted at n contains more than 1 particle,
    determine which child c of node n particle i lies in
    QuadInsert(i, c)
  else if the subtree rooted at n contains one particle
    ... n is a leaf
    add n's four children to the Quadtree
    move the particle already in n into the child in which it lies
    let c be child in which particle i lies
    QuadInsert(i, c)
  else if the subtree rooted at n is empty
    ... n is a leaf
    store particle i in node n
  endif
```
... For each particle, traverse the tree
... to compute the force on it.
For i = 1 to n
 f(i) = TreeForce(i,root)
end for

function f = TreeForce(i,n)
... Compute gravitational force on particle i
... due to all particles in the box at n
f = 0
if n contains one particle
 f = force computed using the formula
else
 r = distance from particle i to
 center of mass of particles in n
 D = size of box n
 if D/r < theta
 compute f using the formula
 else
 for all children c of n
 f = f + TreeForce(i,c)
 end for
 end if
end if
Can Barnes-Hut Exploit Parallelism?

Steps are:

- $O(N)$ finding outer bounds of set of particles
- $O(N \log N)$ tree-construction computation
- $O(N \log N)$ point acceleration computation

Which steps can be parallelized?
Parallel Computation of Barnes-Hut Algorithm

- Conjectured parallel versions for large N, p processors, ignoring communication costs
 - Each step is:
 - $O(N/p)$ finding outer bounds of set of particles
 - $O(N \log N/p)$ tree-construction computation
 - $O(N/p)$ center of mass computation (for tree)
 - $O((N \log N)/p)$ point acceleration computation
 - $O((N \log N)/p)$ overall
What if we can’t ignore communication costs (e.g. on distributed-memory system)?

One problem is **load-balancing**:

How do we distribute the computational work onto p processors so that each one is approximately equally busy?

- finding outer bounds of set of particles
- tree-construction computation
- center of mass computation (for tree)
- point acceleration computation
Orthogonal Recursive Bisection for load-balancing

Position vertical line so as to divide number of points in half. Within each half, position horizontal line so as to divide those numbers of points in half, etc., until there are as many divisions overall as there are processors.

This is *separate* from the partitioning used in the quad-tree.

Load-balancing does not demand that spatially-close points be on the same processor.
Orthogonal Recursive Bisection

Example: Decomposition Resulting from Orthogonal Recursive Bisection of a System with Two Galaxies

From: http://www.npac.syr.edu/copywrite/pcw/node281.html
A Related Issue: Locality of Data can be Used to Advantage

Optimizing the acquisition of *locally-essential* data.

Each square represents a datum required to compute force on a point in the lower-left quadrant.

See: http://www.npac.syr.edu/copywrite/pcw/node282.html
N-Body Case Study, 1992
(from http://www.npac.syr.edu/copywrite/pcw/node283.html)

- 512-processor Intel Delta at Caltech
- 17.15 million bodies for approximately 600 time steps
- simulated regions of the universe 100 megaparsec
- ran at an aggregate speed exceeding 5000 MFLOPS/sec, generating 25 GB of data
- initialized with random-density fluctuations consistent with the “cold dark matter” hypothesis
- 1992 Gordon Bell Price for performance in practical parallel processing research
Fast Multipole Method (FMM)
(L. Greengard and V. Rokhlin, J. Comp. Phys. 73 (1987) 325.)

- An alternate method for the N-body problem.
- It is based on establishing a vector field in which the force on a particle can be evaluated.

 (A multipole expansion is akin to a Taylor’s series.)
- Like Barnes-Hut, it uses a quad or oct-tree.
- It is $O(N)$ per step, but the constant may be higher than in the $O(N \log N)$ Barnes-Hut algorithm.
- $O(N/p)$ parallelization is possible.
FMM Cursory Outline

(1) Build the quadtree containing all the points.

(2) Traverse the quadtree from bottom to top, computing \textbf{Outer}(n) [potential away from n] for each square n in the tree.

(3) Traverse the quadtree from top to bottom, computing \textbf{Inner}(n) [potential inside n] for each square in the tree.

(4) For each leaf, add the contributions of nearest neighbors and particles in the leaf to \textbf{Inner}(n).
References

- http://www.cs.cmu.edu/~scandal/alg/nbody.html (includes an applet for Barnes-Hut)

- http://www.npac.syr.edu/copywrite/pcw/node303.html

- http://www2.epcc.ed.ac.uk/~mario/nbody.html (*many* additional links)

- http://www.eecs.berkeley.edu/~demmel/cs267/