Parallel Computing Timeline
Compiled by Robert Keller

CS 156
Fall 2009
Sources

- http://www.computerhistory.org/timeline
- wikipedia
1960: Instruction Pipelining, Memory Interleaving

- IBM “Stretch” (7030)
- 1.2 MIPS
- about 250,000 64-bit words of memory
1964:
Parallelism in Instruction Streams

IBM announced the System/360, a family of six mutually compatible computers and 40 peripherals that could work together. The initial investment of $5 billion was quickly returned as orders for the system climbed to 1,000 per month within two years. At the time IBM released the System/360, the company was making a transition from discrete transistors to integrated circuits, and its major source of revenue moved from punched-card equipment to electronic computer systems.

CDC’s 6600 supercomputer, designed by Seymour Cray, performed up to 3 million instructions per second — a processing speed three times faster than that of its closest competitor, the IBM Stretch. The 6600 retained the distinction of being the fastest computer in the world until surpassed by its successor, the CDC 7600, in 1968. Part of the speed came from the computer’s design, which had 10 small computers, known as peripheral processors, funneled data to a large central processing unit.

360 mod 91 actually came a little later (1967?)

CDC 6600
1966: SIMD Machine

The Department of Defense Advanced Research Projects Agency contracted with the University of Illinois to build a large parallel processing computer, the ILLIAC IV, which did not operate until 1972 at NASA’s Ames Research Center. The first large-scale array computer, the ILLIAC IV achieved a computation speed of 200 million instructions per second, about 300 million operations per second, and 1 billion bits per second of I/O transfer via a unique combination of parallel architecture and the overlapping or "pipe-lining" structure of its 64 processing elements.

This photograph shows one of the ILLIAC’s 13 Burroughs disks, the debugging computer, the central unit, and the processing unit cabinet with a processing element.
1975: Fault Tolerance

Tandem computers tailored its Tandem-16, the first fault-tolerant computer, for online transaction processing. The banking industry rushed to adopt the machine, built to run during repair or expansion.
1976: Vector Processor

- The Cray I made its name as the first commercially successful vector processor. The fastest machine of its day, its speed came partly from its shape, a C, which reduced the length of wires and thus the time signals needed to travel across them.

- Project started: 1972
- Project 1976 completed:
  - Speed: 166 million floating-point operations per second
  - Size: 58 cubic feet
  - Weight: 5,300 lbs.
  - Technology: Integrated circuit
  - Clock rate: 83 million cycles per second
  - Word length: 64-bit words
  - Instruction set: 128 instructions
1982: Parallel Vector Processor

The Cray XMP, first produced in this year, almost doubled the operating speed of competing machines with a parallel processing system that ran at 420 million floating-point operations per second, or megaflops. Arranging two Crays to work together on different parts of the same problem achieved the faster speed. Defense and scientific research institutes also heavily used Crays.
1983: Hypercube Interconnect

- Cosmic Cube at Caltech
- Used 8086 chips

- iPSC at Intel
- Used 8086 chips, multiple ethernet cards to interconnect
- (Example: “Henry” on 2nd floor Sprague)

- nCUBE corp.: 1024 custom architecture
1986: Connection machine

Daniel Hillis of Thinking Machines Corp. moved artificial intelligence a step forward when he developed the controversial concept of massive parallelism in the Connection Machine. The machine used 16,000 processors and could complete several billion operations per second. Each processor had its own small memory linked with others through a flexible network that users could alter by reprogramming rather than rewiring.

The machine’s system of connections and switches let processors broadcast information and requests for help to other processors in a simulation of brainlike associative recall. Using this system, the machine could work faster than any other at the time on a problem that could be parcelled out among the many processors.
1987: Butterfly interconnect

- BBN Butterfly
- NUMA architecture
1987: Parallel Inference Machine

Japanese 5th Generation Project
1991: Distributed Shared Memory

- Stanford DASH
1995: Cray T3E-1200

- Distributed memory
- 32 to 2048 processing elements (PEs)
- 8 Million words (64 MB) per PE
- PE: DEC Alpha, 1200 Mflops
- 2.4 teraflops maximum
- 3-D torus interconnect
- interprocessor comm. rate: 500 Mi
- starting at the paltry sum of $630,000
1996: NOW (Network of Workstations)
Beowulf Cluster

John Koza’s 1000 node cluster, 1999
Used for Genetic Programming
1997: ASCI Red

- Intel i4640 nodes
- Housed at Sandia NL
- 666 MOPs peak per node
- 606 GB memory
2003: IBM SP3

- 1-8 processors, shared memory
- up to 16 GB memory
- networkable to 512 processors
- PE: IBM RS/6000
- 2-level coherent cache
- 14.2 GB/s crosspoint switch
- Cost for 128 PE version: only $8,614,441
2006: SGI Origin 3000 series

- 16-512 processors
- up to 1 TB shared memory
- R12000 processors, 300 MHz
- NUMA architecture
- 38.4 Gflops for 64 processors
- 716 GB/s system bandwidth
- Cost starting around $300k
2005-08: Red Storm (Cray-Designed) at Sandia

<table>
<thead>
<tr>
<th>Operational Time Frame</th>
<th>2005</th>
<th>2006</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Peak (TF)</td>
<td>41.47</td>
<td>124.42</td>
<td>284.16</td>
</tr>
<tr>
<td>HPL Performance (GF)</td>
<td>36190 on 10,880 processors</td>
<td>101400 on 26,544 processors</td>
<td>204200 on 38,208 processors</td>
</tr>
<tr>
<td>Architecture</td>
<td>distr memory MIMD</td>
<td>distr memory MIMD</td>
<td>distr memory MIMD</td>
</tr>
<tr>
<td>Number of compute processors</td>
<td>10,368</td>
<td>25,920 (12,960 nodes)</td>
<td>38,400 (12,960 nodes)</td>
</tr>
<tr>
<td>Number of service/IO processors</td>
<td>256 + 256</td>
<td>320+320</td>
<td>320+320</td>
</tr>
<tr>
<td>Processor</td>
<td>AMD Opteron™ @ 2.0 GHz</td>
<td>AMD dual core Opteron™ @ 2.4 GHz</td>
<td>6720 AMD dual-core Opteron™ @ 2.4 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6240 AMD quad-core Opteron™ @ 2.2 GHz</td>
</tr>
<tr>
<td>Total Memory</td>
<td>33.38TB</td>
<td>39.19 TB</td>
<td>78.75 TB</td>
</tr>
<tr>
<td>System Memory B/W</td>
<td>57.97 TB/s</td>
<td>78.12 TB/s</td>
<td>126.29 TB/s</td>
</tr>
<tr>
<td>User Disk Storage</td>
<td>240 TB</td>
<td>540 TB</td>
<td>1352 TB</td>
</tr>
</tbody>
</table>
2004-2011: IBM Blue Gene

The first computer in the Blue Gene series, Blue Gene/L, developed through a partnership with Lawrence Livermore National Laboratory (LLNL), originally had a theoretical peak performance of 360 TFLOPS.

The archetypal Blue Gene/Q system called Sequoia will be installed at Lawrence Livermore National Laboratory in 2011 as a part of the Advanced Simulation and Computing Program running nuclear simulations and advanced scientific research.

It will consist of 98,304 compute nodes comprising 1.6 million processor cores and 1.6 PB memory in 96 racks covering an area of about 3000 square feet, drawing 6 megawatts of power.
2007: Cray XT5 (Jaguar, Kraken)

As the single most scalable Linux supercomputer, the Cray XT5™ system combines unprecedented sustained application performance with exceptional manageability and reliability, and lower cost of ownership for customers.

Using powerful AMD Opteron™ processor cores, the Cray XT5 system supports both Cray XT4™ blades for optimized compute/interconnect balance and the new Cray XT5 blades optimized for memory-intensive and/or compute-biased workloads.

Oak Ridge National Laboratory's (ORNL) "Jaguar" supercomputer, a Cray XT5 system, is the fastest in the world for open science.
## 2009: Current Top 500 SC Sites

http://www.top500.org/

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>System</th>
<th>Cores</th>
<th>$R_{max}$</th>
<th>$R_{peak}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DOE/NNSA/LANL United States</td>
<td>BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM</td>
<td>129600</td>
<td>1105</td>
<td>1456.7</td>
</tr>
<tr>
<td>2</td>
<td>Oak Ridge National Laboratory United States</td>
<td>Cray XT5 QC 2.3 GHz Cray Inc.</td>
<td>150152</td>
<td>1059</td>
<td>1381.4</td>
</tr>
<tr>
<td>3</td>
<td>Forschungszentrum Juelich (FZJ) Germany</td>
<td>Blue Gene/P Solution IBM</td>
<td>294912</td>
<td>825.5</td>
<td>1002.7</td>
</tr>
<tr>
<td>4</td>
<td>NASA/Ames Research Center/NAS United States</td>
<td>SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz SGI</td>
<td>51200</td>
<td>487.01</td>
<td>608.83</td>
</tr>
<tr>
<td>5</td>
<td>DOE/NNSA/LLNL United States</td>
<td>eServer Blue Gene Solution IBM</td>
<td>212992</td>
<td>478.2</td>
<td>596.38</td>
</tr>
</tbody>
</table>
Slicing the Top 500 Pie

Vendors / Systems
June 2009

Vendors / Performance
June 2009

IBM
Hewlett-Packard
Sun Microsystems
Bull SA
Appro International
Dell
Cray Inc.
SGI
Others

IBM
Hewlett-Packard
Sun Microsystems
Fujitsu
Appro International
Bull SA
Dell
Cray Inc.
SGI
Others
Share vs. Time
<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>System</th>
<th>Cores</th>
<th>R&lt;sub&gt;max&lt;/sub&gt;</th>
<th>R&lt;sub&gt;peak&lt;/sub&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Computational Research Laboratories, TATA SONS India</td>
<td>Cluster Platform 3000 BL460c, Xeon 53xx 3GHz, Infiniband Hewlett-Packard</td>
<td>14384</td>
<td>132.8</td>
<td>172.61</td>
</tr>
<tr>
<td>30</td>
<td>Government Agency Sweden</td>
<td>Cluster Platform 3000 BL460c, Xeon 53xx 2.66GHz, Infiniband Hewlett-Packard</td>
<td>13728</td>
<td>102.8</td>
<td>146.43</td>
</tr>
<tr>
<td>34</td>
<td>Pacific Northwest National Laboratory United States</td>
<td>Cluster Platform 4000 DL185G5, Opteron QC 2.2 GHz, Infiniband DDR Hewlett-Packard</td>
<td>18176</td>
<td>97.07</td>
<td>159.95</td>
</tr>
<tr>
<td>35</td>
<td>IT Service Provider Germany</td>
<td>Cluster Platform 3000 BL2x220, E54xx 3.0 Ghz, Infiniband Hewlett-Packard</td>
<td>10240</td>
<td>94.74</td>
<td>122.88</td>
</tr>
<tr>
<td>54</td>
<td>Joint Supercomputer Center Russia</td>
<td>Cluster Platform 3000 BL460c/BL2x220, Xeon 54xx 3 Ghz, Infiniband Hewlett-Packard</td>
<td>7920</td>
<td>71.28</td>
<td>95.04</td>
</tr>
<tr>
<td>59</td>
<td>University of Minnesota/Supercomputing Institute United States</td>
<td>Cluster Platform 3000 BL280c G6, Xeon X55xx 2.8Ghz, Infiniband Hewlett-Packard</td>
<td>8048</td>
<td>64</td>
<td>90.14</td>
</tr>
</tbody>
</table>
Rayleigh-Taylor Simulation (Turbulence)
3-day Forecast, Northern Hemis.
http://www.ecmwf.int
Reactor Modeling

GaAs MOCVD: Simulation
Solution of the Poission-Boltzmann equation
(from http://compbio.caltech.edu/applications/pmg/sod.html)

Isosurfaces of electrostatic potentials in the SOD (SuperOxide Dismutase) enzyme obtained by solving the nonlinear Poisson-Boltzmann equation numerically. The SOD enzyme is an antiradical or antioxidant, meaning that it moves around the body binding to and then deactivating free radicals in the body, preventing them from causing cancer or other cell damage in the body.