Synchronous Parallel Computation
An Extreme: Cellular Automata

- Synchronous computation
- Infinitely-large grid (finite occupancy)
- Typically fine-grain
- If distributed, still need to communicate and boundaries, once per cycle.
Barriers: Used in MIMD, SPMD

- **Synchronize** all of a group of processes

- Used in both distributed and shared-memory

- Issue: Implementation & cost
Barriers

- Synchronize all of a group of processes
- Used in both distributed and shared-memory
- Issue: Implementation & cost
Counter Method for Barriers

- One-phase version
 - Use for distributed-memory
 - Each processor sends a message to each of the others when barrier reached.
 - When each processor has received a message from all others, the processors pass the barrier
Counter Method for Barriers

- Two-phase version
 - Use for shared-memory

 Each processor sends a message to the master process.

 When the master has received a message from all others, it sends messages to each processor indicating that it can pass the barrier.

 Easily implemented with blocking receives, or semaphores (one per processor).
Tree Barrier

- Processors are organized as a tree, with each sending to its parent.

- **Fan-in phase:** When the root of the tree receives messages from both children, the barrier is complete.

- **Fan-out phase:** Messages are then sent down the tree in the reverse direction, and processes pass the barrier upon receipt.
Butterfly Barrier

- Adjacent pairs (in dimensions of a hypercube in sequence) notify each other.

- Advantage is that no separate fan-out phase is required.
Butterfly Barrier

Figure 6.6 Butterfly construction.
Barrier Bonuses

- Barrier messages heretofore are communications with null content.

- By **adding content** to messages, barriers can have added utility.
Barrier Bonuses

● These can be accomplished along with a barrier:

 ● **Reduce** using a binary operator
 (esp. good with a tree or butterfly barrier)

 ● All-to-all **broadcast**
Data Parallel Programming Constructs

- **forall** statement:

  ```
  forall( j = 0; j < n; j++ )
  {
    ... body done in parallel for all j ...
  }
  ```

- **Barrier** implied at end among parallel bodies
Example: Prefix-Sum

Figure 6.8 Data parallel prefix sum operation.
Example: Prefix-Sum

- Assume that \(n \) is a power of 2.
- Assume shared memory.
- \(\text{for}(j = 0; j < \log(n); j++) \) // parallel steps

\[
\text{forall}(i = 2^j; i < n; i++)
\]

\[
x[i] += x[i-2^j];
\]

buffered new value

old value
Implementing **forall** using SPMD: “Synchronous Iteration”

- for(j = 0; j < log(n); j++)
 forall(i = 0; i < n; i++)
 Body(i);

 implementable in **SPMD** as:

- for(j = 0; j < log(n); j++)
 {
 i = my_process_rank();
 Body(i);
 barrier();
 }

 Outer forall processes **implicit** due to SPMD
Example:
Iterative Linear Equation Solver

for(iter = 0; iter < numIterations; iter++)

forall(i = 0; i < n; i++)
{
 double sum = 0;
 for(j = 1; j < n; j++)
 sum += a[i][j]*x[j];
 x[i] = sum;
}
Iterative Linear Equation Solver: Translation to SPMD

```c
for( iter = 0; iter < numlterations; iter++ )
{
    i = my_process_rank();
    double sum = 0;
    for( j = 1; j < n; j++ )
        sum += a[i][j]*x[j];
    new_x[i] = sum;
    all gather new_x to x (implied barrier)
}
```
Nested forall’s

● $\forall i = 0; \ i < m;\ i++$
 $\forall j = 0;\ j < n;\ j++$
 Body(i, j)
Example of nested forall’s:
Laplace equation

- forall(i = 0; i < m; i++)
 - forall(j = 0; j < n; i++)
 - x[i][j] = (x[i-1][j] + x[i][j-1] + x[i+1][j] + x[i][j+1])/4.0;
Exercise

How would you translate nested forall’s to SPMD?