Software Development Project Management
Software Development Process?

1) Announce availability.
2) Order the T-shirts for the Development team.
3) Write the code.
4) Write the manual.
5) Hire a Product Manager.
6) Spec the software (Writing the specs after the code helps to ensure that the software meets the specifications).
7) Ship.
8) Test (the customers are a big help here).
9) Identify bugs as potential enhancements.
10) Announce the upgrade program.
Cynical Views or Reality?

- Projects progress quickly until they are 90% complete. Then they remain at 90% complete forever.

- When things are going well, something will go wrong. When things just can’t get worse, they will. When things appear to be going better, you have overlooked something.

- If project content is allowed to change freely, the rate of change will exceed the rate of progress.

- Project teams detest progress reporting because it manifests their lack of progress.
Project Management Terms
(not universal)

- **Tasks**: Small units of work
- **Activities**: Major work units
- **Milestones**: When activities are completed
- **Functions**: Pervasive, on-going management activities
Tasks: Small units of work

- **Smallest** unit of management accountability
 - Atomic unit of planning and tracking
 - Finite duration, need resources, produce tangible result (documents, code)

- Specification of a task: Work package
 - Name, description of work to be done
 - **Preconditions** for starting, **duration**, required **resources**
 - Work product to be produced, acceptance criteria for it
 - Risk involved

- Completion criteria
 - Includes the acceptance criteria for the work products (deliverables) produced by the task.
Activities: Major Units of Work

- Culminates in major project milestone:
 - Internal checkpoint should not be externally visible
 - Scheduled event used to measure progress

- Milestone often produces baseline:
 - Formally reviewed work product
 - Under change control (change requires formal procedures)

- Activities may be grouped into larger activities:
 - Establishes hierarchical structure for project (phase, step, ...)
 - Allows separation of concerns
 - Precedence relations often exist among activities (PERT Chart)
Examples of Activities

- **Major Activities:**
 - Planning
 - Requirements Elicitation
 - Requirements Analysis
 - System Design
 - Object Design
 - Implementation
 - System Testing
 - Delivery

- **Activities during requirements analysis:**
 - Refine scenarios
 - Define Use Case model
 - Define object model
 - Define dynamic model
 - Design User Interface
Project “Functions”

- Examples:
 - Project management
 - Configuration Management
 - Documentation
 - Quality Control (Verification and validation)
 - Training

- Project Functions in the IEEE 1058 standard are called **Integral processes** in the IEEE 1074 standard.
Organizational Diagrams

- **Work breakdown structure (WBS):** Shows hierarchy of work products

- **PERT chart:** Shows the order in which activities must be done (a partial order)

- **Gantt Chart or Schedule:** Shows scheduling of work products as a function of time
Creating Work Packages

- Work Breakdown Structure (WBS)
 - Break up project into activities (phases, steps) and tasks.
 - The work breakdown structure does not show the interdependence of the tasks.
Work Breakdown Structure (WBS) Diagram

- Build communications software

 - System planning (1.0)
 - Review specification (1.1)
 - Review budget (1.2)
 - Review schedule (1.3)
 - Develop plan (1.4)

 - System design (2.0)
 - Top-level design (2.1)
 - Prototyping (2.2)
 - User interface (2.3)
 - Detailed design (2.4)
 - Coding (3.0)
 - Testing (4.0)
 - Delivery (5.0)

Source: Pfleeger, ch. 3
WBS Tradeoffs

- Work breakdown structure influences cost and schedule

- Determination of work breakdown structure may be incremental and iterative
PERT Chart

- "Program Evaluation and Review Technique"
- U.S. Navy, 1957
PERT chart
(Similar to UML Activity Diagram)
To Build a PERT chart

1. List all the tasks.
2. For each task:
 - List the tasks that must (immediately) precede that task
 - Remove implied dependencies (called the “transitive reduction” of the graph)
Tasks in Building a House:
What are likely required orders?

- Install roofing
- Install interior electrical
- Buy materials
- Excavate
- Build outside wall
- Install interior plumbing
- Install exterior siding
- Paint interior
- Install flooring
- Lay foundation
- Obtain permits
- Install exterior electrical
- Install exterior doors and fixtures
- Paint exterior
- Survey land
- Install interior doors and fixtures
- Install wallboard
- Install exterior plumbing
Task durations and dependencies

<table>
<thead>
<tr>
<th>Task</th>
<th>Duration (days)</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>15</td>
<td>T1</td>
</tr>
<tr>
<td>T4</td>
<td>10</td>
<td>T2, T4</td>
</tr>
<tr>
<td>T5</td>
<td>10</td>
<td>T1</td>
</tr>
<tr>
<td>T6</td>
<td>5</td>
<td>T1, T2</td>
</tr>
<tr>
<td>T7</td>
<td>20</td>
<td>T1</td>
</tr>
<tr>
<td>T8</td>
<td>25</td>
<td>T4</td>
</tr>
<tr>
<td>T9</td>
<td>15</td>
<td>T3, T6</td>
</tr>
<tr>
<td>T10</td>
<td>15</td>
<td>T5, T7</td>
</tr>
<tr>
<td>T11</td>
<td>7</td>
<td>T9</td>
</tr>
<tr>
<td>T12</td>
<td>10</td>
<td>T11</td>
</tr>
</tbody>
</table>

source: Sommerville, Software Engineering, 5th Ed.
Task network with Milestones (ovals)

source: Ian Sommerville, Software Engineering, 5th Ed.
Determine from PERT Chart

- For each task:
 - Earliest start time (from forward pass)
 - Latest start time (from backward pass)
 - Slack (or float)

- For project
 - Minimum completion time
 - Critical path (from ESTs & LSTs)
PERT \rightarrow Gantt

- As we saw, PERT enforces certain precedence constraints.

- Other kinds of constraints:
 - Staff assignment (task \rightarrow person) and loading constrains number of activities that can go on concurrently.
 - Resource availability further constrains time at which various activities can happen.

- The Gantt chart (or schedule) shows a particular scheduling of the tasks, subject to all of the constraints.
Gray bars show **slack** in activity.

source: Ian Sommerville, Software Engineering, 5th Ed.
A Real-life Gantt Chart
(source: http://www.kidas.com/information/examples/aerospace/aerospace2.html)

Master Schedule

<table>
<thead>
<tr>
<th>WBS</th>
<th>Activity</th>
<th>FY99</th>
<th>FY00</th>
<th>FY01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apr</td>
<td>May</td>
<td>Jun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apr</td>
<td>May</td>
<td>Jun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
</tr>
<tr>
<td>1</td>
<td>Mobile Comm Terminal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Modem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Transmitter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Baseband Equip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Antenna Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Integration & Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Tech Publications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Engineering Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Management Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **WBS**: Work Breakdown Structure
- **FY**: Fiscal Year
- **SCHEDULED EVENT**: Event scheduled to occur at a specific time.
- **COMPLETED EVENT**: Event completed at a specific time.
- **CRITICAL MILESTONE**: Milestone critical to the project timeline.
- **SUMMARY SCHEDULE**: Summary of the project schedule.
Henry L. Gantt (1861-1919)
(http://accel-team.com/scientific/scientific_04.html)

- well-known pioneer in the early days of scientific management

- remembered for his humanizing influence on management, emphasizing the conditions that have favorable psychological effects on the worker

- “The Gantt chart for which he will be remembered, is a visual display chart used for scheduling, which is based on time, rather than quantity, volume or weight.”
A “critical path” on a PERT chart is one in which the sum of durations of the tasks on the path equals the shortest overall project-completion time.

The critical path is shaded on the preceding diagram.

PERT is also called CPM (Critical Path Method)
What is the Critical Path in Building your House, given the number of days required as shown?

- Install roofing (4)
- Install interior electrical (2)
- Buy materials (5)
- Excavate (7)
- Build outside wall (5)
- Install interior plumbing (4)
- Install exterior siding (3)
- Paint interior (2)
- Install flooring (2)
- Lay foundation (2)

- Obtain permits (24)
- Install exterior electrical (3)
- Install exterior doors and fixtures (2)
- Paint exterior (1)
- Survey land (1)
- Install interior doors and fixtures (2)
- Install wallboard (2)
- Install exterior plumbing (1)
Exercise

- List as many ways you can for **shortening** the critical path in a set of tasks.
Staff Loading & Resources

- Staff loading and resource constraints are two aspects of scheduling not represented directly on PERT charts.

- Generally they have the effect of providing added sequencing, and therefore lengthening overall project time.
Staff Loading & Resources

- Staff loading refers to:
 - Some tasks can be assigned only to certain staff members, based on specialized skills.
 - A given staff member can only do so much at a time.
 - Staff members differ in their productivity on a given task.
Staff loading

source: Sommerville, Software Engineering, 5th Ed.
Resource constraints refers to certain resources being needed for certain tasks, but being limited in the number of tasks they can support concurrently.

Resources include:
- Machines, workstations, storage units
- Rooms, offices
Exercise

- How Do Constraints Differ from Precedence Relationships?
Tracking How Well are We Doing
Earned-Value Tracking Method/Chart

- One way to track how close to “done” the project is:
 - As key parts of a product are completed, the product “earns value”.
 - Express earned value in % of total value or $ (= % x budgeted amount for task)
 - Some variations allow partial credit, others don’t.
Earned Value vs. Time

- Earned value
- Target: project complete
- Time

100%
Earned Value vs. Time

- Earned value
- 100% task completed
- Time scale: 100, 200, 300
Earned Value vs. Time

100% | earned value

project complete

task completed

time
Use of Earned Value Diagram

- Based on project Gantt chart, create a profile **plan** of earned value

- Track **actual** earned value against plan

- Use **discrepancies** to make projections about delivery dates, cost, etc.
Project Ahead of Schedule

- **earned value**
- **actual earned value**
- **planned earned value profile**

![Graph showing project progress with earned value, actual, and planned values against time.](chart)
Project Behind Schedule

earned value

planned earned value profile

actual earned value

slippage

time

100%

100 200 300
Earned Value with sub-tasks in $ (% x budget)

Earned Value Calculation Example

<table>
<thead>
<tr>
<th>Task</th>
<th>2000</th>
<th>Budget</th>
<th>Percent Complete</th>
<th>Earned Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget</td>
<td>5000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCWP</td>
<td>4000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above shows the earned value calculation for different tasks, including sub-tasks, with budget allocations, percent complete, and earned values. The graph on the right side provides a visual representation of these values over time.
Example Gantt Chart with Earned Value Overlay

Contract Review

Earned Value Report

<table>
<thead>
<tr>
<th>Task</th>
<th>2001 (October, November, December)</th>
<th>BCWS</th>
<th>ACWP</th>
<th>BCWP</th>
<th>PRCNT CMPLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chart Details

- **BCWS**: Budgeted Cost of Work Scheduled
- **ACWP**: Actual Cost of Work Performed
- **BCWP**: Budgeted Cost of Work Performed
- **PRCNT CMPLT**: Percent Complete

Key Points

- Task 1: Budgeted Cost $400.00
- Task 2: Actual Cost $2500.00
- Task 3: Final Review

Legend

- Blue: Earned Value
- Black: Budget
- Red: Spending
- ▲: Program Review
- ▼: Status
- ▲: Summary

Notes

- Contracts review: 11-30-01
- Sign Off: __________
Implication of Slippage

- Slippage in earned value may imply slippage in delivery date, especially if the slipped task is on the critical path.
Slip Chart
(Dwayne Phillips)

announced delivery date

announced delivery date

days into project
Slip Chart

slip = delivery date minus previously announced delivery date

new announcement

slip = 50 days
Slip Chart

- announced delivery date
- slip = 25 days

Days into project
- 100, 200, 300

Announced delivery date
- 200, 300
Slip Chart

smaller slips are better

announced delivery date

slip = 25 days
Slip Chart

announced delivery date

actual delivery

overall slippage

line of announced = elapsed
Word for Windows 1.0 Slip

1880
365
= 515%
net slip

Slip vs. Lead

- **slip** = delivery date minus previously announced delivery date

- **lead** = previously announced delivery date minus date on which new delivery announced
Example of Lead

- lead = previously announced delivery date minus date on which new delivery announced

Example:
- Original delivery date = day 200
- On day 100 announce new delivery date: day 300: moderate lead
Example of Lead

- lead = previously announced delivery date minus date on which new delivery announced

- Original delivery date = day 200

- On day 195 announce new delivery date: day 300: very small lead

- Small leads are bad (but small slips are good)
Slip-Lead Chart
(plots slips vs. leads)

Slip (not delivery date)

announcements

lead
Slip-Lead Chart (plots slips vs. leads)

- **Healthy region** (large leads, small slips)
- **Unhealthy region** (large slips, small leads)

The chart shows points indicating announcements, with the coordinates:
- **Point 1**: (100, 100)
- **Point 2**: (200, 200)
- **Point 3**: (300, 300)
Word for Windows 1.0 Slip/Lead