Algorithms
Computer Science 140 & Mathematics 168
Spring 2009
Homework 5a
Due Thursday, February 19

• Due to the exam given out on Thursday, no extensions may be used on this assignment.

• Please remember that during the exam period (Thursday, February 19 at 11 AM through Tuesday, February 24 at 9:35 AM) no discussions on algorithms material is permitted (including grutors, Ran, friends, relatives, pets, etc.). So, if you would like to discuss any material, please do so before the exam begins.

1. [20 Points] Analyzing Build-Heap!

Recall from class that the Heapsort algorithm sorts an array (indexed from 1 to \(n \)) as follows: Consider the array as representing a binary tree where the children of the node at index \(i \) are found at indices \(2i \) and \(2i + 1 \) (unless these indices are out of range).

We begin by turning this array into a heap: a binary tree in which each node is less than or equal to its descendants. To do so, we invoke a process called Build-Heap that starts at node \(i = \lfloor \frac{n}{2} \rfloor \) and works down to 1. For each \(i \) in this range, Build-Heap ensures that the tree rooted at \(i \) has the property that it is a heap itself! To this end, node \(i \) is compared with both of its children. If it is less than or equal to both of its children, we are done with node \(i \) and we continue on to node \(i - 1 \). Otherwise, we swap the value at node \(i \) with the smaller of its two children and then repeatedly “percolate” this value down until it reaches its correct location in the heap rooted at node \(i \).

In class, we argued that since the heap has height \(O(\log n) \) and there are approximately \(n/2 \) nodes that are examined in the Build-Heap process, the total running time of Build-Heap is \(O(n \log n) \).

In this problem you will prove that the actual total running time of Build-Heap is \(O(n) \) by using an amortization argument. For simplicity, assume that \(n = 2^k - 1 \) for some \(k > 1 \). That is, the heap is a complete binary tree in which all of the leaves are at the same level.
In this amortization scheme, each of the n nodes receives 3 rubles at the outset. We claim that this is enough to pay for all of the work incurred by Build-Heap. To help see why, notice that we start the Build-Heap process at index $\lfloor \frac{n}{2} \rfloor$, a node with two leaf children. Let’s call this node “Joe”. This is not a proof yet, so giving names to nodes is fun and easy! Joe does two comparisons and perhaps a swap, for a total of 3 operations. (We are assuming that a comparison counts as one operation and a swap counts as one operation.) However, the tree rooted at Joe has 9 rubles at its disposal: 3 for each of the two leaves and 3 for Joe. We spend at most 3 rubles, leaving 6 rubles in Joe’s tree for future work. Next, Joe’s sibling, Josette, does the same thing, leaving her tree with 6 rubles for later work. Eventually, we get to Joe and Josette’s parent, Pat. Pat has 3 rubles and each of its children, Joe and Josette, have 6 rubles remaining in their own trees. This is a total of 15 rubles. How much work does Pat incur? There are two comparisons (compare Pat to Joe and Josette) and perhaps a swap. Then, in the worst case that Pat is swapped, there are two more comparisons and perhaps a swap for a total of up to 6 operations. This uses 6 of the 15 rubles in this tree, leaving 9 rubles in Pat’s tree for later work.

Based on the observations above, give a careful proof by induction that shows that the 3 rubles allocated at each node pays for the entire Build-Heap process, resulting in $O(n)$ running time for Build-Heap. Hint: You will need to state a precise invariant that is preserved by this accounting scheme. Proving this invariant by induction will imply that the scheme pays for all of the work.

2. [10 Points] Real-Queue and Helper-Queue Revisited! On the last assignment, you used an accounting argument to show that any sequence of n operations (chosen from enqueue, dequeue, and find-min) takes $O(n)$ time. Now, prove this again using the potential method.