Assume for context the lectures of the week of 17 February, and the accompanying slides, which are posted on the web.

1. [5] Prove that, for any formulas φ and ψ, $\varphi \models \psi$ implies $\models \varphi \rightarrow \psi$, using reasoning about interpretations (related to slide 20).

2. [5] Prove that, for any formulas φ and ψ, $\models \varphi \rightarrow \psi$ implies $\varphi \models \neg \psi$ with respect to natural deduction rules (related to slide 20).

3. [15] Prove the part of the structural induction step of propositional soundness for the $\rightarrow E$ rule. (see slide 14).

4. [20] Prove the part of the structural induction step of propositional soundness for the $\lor E$ rule. (see slide 15).

5. [20] Prove the part of the structural induction on formulas step for the completeness theorem, where η is of form $\rho_1 \rightarrow \rho_2$ (see slide 28). Show any natural deduction steps that you claim exist.

6. [Extra Credit, 40] Show the natural deduction proof that would be generated, in the proof of the completeness theorem, corresponding to:

$$\models (\neg p \land q) \rightarrow (q \land \neg p)$$

7. (Not meta-proofs) Prove, using the sequent calculus [7 each]:
 a. $\models \neg P \lor \neg P$
 b. $\models ((P \rightarrow Q) \rightarrow P) \rightarrow P$
 c. $\neg (P \land Q) \models \neg P \lor \neg Q$
 d. $\models (R \rightarrow S) \rightarrow ((P \rightarrow R) \rightarrow (P \rightarrow S))$
 e. $(P \rightarrow Q) \land (Q \rightarrow R), \neg R \models \neg P$

You may use JAPE, but please know how to do by hand.