Proving Programs by Structural Induction

Robert Keller
March 2009
Verification Patterns

- **Structural induction on program structure** involves proving properties based on the manner in which programs are composed (e.g. Hoare logic).

- **Transition induction** involves proving properties base on the number of steps executed (e.g. Floyd assertions).

- **Structural induction on data** involves proving properties based on the definition of data types involved.
Structural Induction on Data

- This is the “original” structural induction.

- It is expressed most easily for functional programs.

- However, we can transform any (sequential) program into a functional program (using McCarthy’s transformation).

- So little generality, if any, is lost.
The idea is a generalization of mathematical induction:

If our only data type were the natural numbers, we know how to prove properties \(P \) for all such numbers:

\[
P(0) \quad \quad P(n) \to P(n+1)
\]

\[(\forall n) P(n)\]
Structural Induction on Lists

- $P(\[\]) \quad P(L) \rightarrow P([A \mid L])$

 $(\forall L) \ P(L)$

- Here
 - $\[]$ is the empty list
 - L represents an arbitrary list
 - A is an arbitrary element of a list
Example 1

- Define (using rex):

 \[
 \text{reverse}(L) = \text{reverse2}(L, \ [\]) ;
 \]

 \[
 \text{reverse2}([\], M) => M ;
 \]

 \[
 \text{reverse2}([A | L], M) => \text{reverse2}(L, [A | M]) ;
 \]

- Show

 \[
 (\forall L) \text{length}(\text{reverse}(L)) = \text{length}(L)
 \]

- using

 \[
 \text{length}([\]) => 0 ;
 \text{length}([A | L]) => 1 + \text{length}(L) ;
 \]
Example 1

Here $P(L)$ is

\[
\text{length}(\text{reverse}(L)) = \text{length}(L)
\]

Structural Induction says it \textbf{suffices} to show:

- $P([])$: $\text{length}(\text{reverse}([])) = \text{length}([])$

- $P(L) \rightarrow P([A \mid L])$:

 \[
 \text{length}(\text{reverse}(L)) = \text{length}(L) \\
 \rightarrow \text{length}(\text{reverse}([A \mid L])) = \text{length}([A \mid L])
 \]
Example 1

- Structural Induction says it **suffices** to show:
 - $P([],) : \text{length}(\text{reverse}([])) = \text{length}([])$
 - $P(L) \rightarrow P([A \mid L]) :$
 - $\text{length}(\text{reverse}(L)) = \text{length}(L)$
 - $\rightarrow \text{length}(\text{reverse}([A \mid L])) = \text{length}([A \mid L])$

- Unfortunately, it will **not** be easy to show this directly, because the **inductive** part of the definition is **not** based on `reverse`, it is based on `reverse2`.
Example 1

- So we have to **broaden** the P we are showing to P':
 - $P'(L)$:
 \[(\forall M) \text{ length} (\text{reverse2}(L, M)) = \text{length}(L) + \text{length}(M)\]

- Then specialize to $M = []$

 \[
 \begin{align*}
 \text{reverse}(L) &= \text{reverse2}(L, []) \text{ and} \\
 \text{length}([]) &= 0 \\
 \text{length}(L) + 0 &= \text{length}(L)
 \end{align*}
 \]

 we get the desired $P(L)$:

 \[
 \text{length}(\text{reverse}(L)) = \text{reverse}(L).
 \]
This broadening requirement is a typical phenomenon in verifying programs.

It occurs in most induction patterns in some form.

In some cases it requires creativity.
Example 1: Proof of P'

- Structural Induction says it **suffices** to show:
 - $P'([], L)$:
 $$\forall M \ length(reverse2([], M)) = length([]) + length(M)$$
 - $P'(L) \rightarrow P'(A | L)$:
 $$\forall M \ length(reverse2(L, M)) = length(L) + length(M) \rightarrow length(reverse2([A | L], M)) = length([A | L]) + length(M)$$

- These two parts can be shown separately, as is the case with most inductive proofs.
Example 1: Proof of P': Basis

- Showing the basis:
 - $P'([])$:
 \[(\forall M) \text{length}(\text{reverse2}([], M)) = \text{length}([]) + \text{length}(M)\]

- We use **symbolic evaluation**: $\text{reverse2}([], M) = M$
 from the definition of reverse2, and $\text{length}([]) = 0$.

- We have reduced the basis to:
 \[(\forall M) \text{length}(M) = 0 + \text{length}(M)\]
 and we can appeal to the definition of $+$ to verify this equality.
Example 1: Proof of P': Induction Step

- Showing the induction step:
 - \(P'(L) \rightarrow P'([A \mid L]) : \)

 \[
 (\forall M) \text{ length}(\text{reverse2}(L, M)) = \text{length}(L) + \text{length}(M)
 \]

 \[
 \rightarrow (\forall N) \text{ length}(\text{reverse2}([A \mid L], N)) = \text{length}([A \mid L]) + \text{length}(N)
 \]

- (We use different quantifiers M and N to avoid messing up later.)

- Assume the stmt before the \(\rightarrow \), to show the stmt after.
Example 1: Proof of P': Induction Step

- Assume $(\forall M) \text{length}(\text{reverse2}(L, M)) = \text{length}(L) + \text{length}(M)$
 to show:
 $(\forall N) \text{length}(\text{reverse2}([A \mid L], N)) = \text{length}([A \mid L]) + \text{length}(N)$

- Again evaluate symbolically:
 $\text{reverse2}([A \mid L], N) = \text{reverse2}(L, [A \mid N])$

 Now we can view $[A \mid N]$ as M in the assumed equality,
 so $\text{length}(\text{reverse2}(L, [A \mid N])) = \text{length}(L) + \text{length}([A \mid N])$
 $= \text{length}(L) + 1 + \text{length}(N)$ (LHS)

 Also, the rhs of the “to show” is $\text{length}([A \mid L]) + \text{length}(N)$
 $= 1 + \text{length}(L) + \text{length}(N)$ (RHS)

- Allowing ourselves the commutative law for + then gives the equality to be shown.
While we did not use a totally formal system to the derivation, we could have.

What we did was a little more formal than “…” type of reasoning (“elliptic reasoning”).
Structural Induction in Jape

- Load functional_programming theory
- "Proof by clicking" (and double-clicking does evaluation/auto-expansion)
- Rules:

 - = reflexive (A=A)
 - = transitive (A=B AND B=C ⇒ A=C)
 - = symmetric (A=B ⇒ B=A)
 - A=C AND B=D ⇒ (A,B)=(C,D)
 - F x = G x ⇒ F = G
 - F(x,y) = G(x, y) ⇒ F = G

 - rewrite
 - rewrite backwards
 - Unfold/Fold with hypothesis
 - Unfold with hypothesis
 - Fold with hypothesis

- List Induction
- Boolean cases
- Monoid Definition

 i.e. structural induction
Notation

- [] is the empty list
- [a] is the list of one element, a
- ++ is list concatenation or append
- • is function composition:
 \[(f \bullet g)x = f(g(x))\]
The list induction model Jape uses is different from the typical asymmetric one using ‘cons’ i.e. [|] in rex.

The definition is:
- [] is a list (the empty list).
- [a] is a list (the list of one element, a).
- If x and y are lists, then so is x++y (the concatenation, or appending, of x followed by y).
To prove a property P for all lists, prove:

- $P([])$.
- $P([a])$, for any single-element list.
- If $P(x)$ and $P(y)$, then $P(x++y)$.

So there are two base cases.

There are two parts to the induction hypothesis.
Example Proof in Jape

- The reverse of the reverse of a list is the original list itself:

- \(\text{rev} \circ \text{rev} = \text{id} \)

- recalling that \(\circ \) is functional composition
Definition of rev

- $\text{rev} \; [] = []$
- $\text{rev} \; [a] = [a]$
- $\text{rev} \; (x \; ++ \; y) = (\text{rev} \; y) \; ++ \; (\text{rev} \; x)$
Steps (working backward)

- Introduce a variable representing the argument list:
Steps (working backward)

- Text select both arguments and indicate list induction:

1. \((\text{rev} \cdot \text{rev})[] = \text{id}[]\)
2. \(\text{rev} \cdot \text{rev} = \text{id}\)
3. \((\text{rev} \cdot \text{rev})x = \text{id} x\)
4. \((\text{rev} \cdot \text{rev})y = \text{id} y\)
5. \((\text{rev} \cdot \text{rev})(xs+ys) = \text{id}(xs+ys)\)
6. \((\text{rev} \cdot \text{rev})x = \text{id} x\)
7. \(\text{rev} \cdot \text{rev} = \text{id}\)
Steps (working backward)

- Prove the [] base case by several double-clicks (which search for applicable rules).

```
1: [] = []  = reflexive
2: [] = id[]  Fold id 1
3: rev([]) = id[]  Fold rev'0 2
4: rev(rev[]) = id[]  Fold rev'0 3
5: (rev ∙ rev)[] = id[]  Fold ∙ 4

⋯
6: (rev ∙ rev)[x3] = id[x3]  assumption
7: (rev ∙ rev)xs = id xs  assumption
8: (rev ∙ rev)ys = id ys
⋯
9: (rev ∙ rev)(xs + ys) = id(xs + ys)

10: (rev ∙ rev)x = id x  listinduction 5,6,7–9
11: rev ∙ rev = id  ext 10
```

"Fold" rule means to replace function app with corresponding definition, working backward.
Steps (working backward)

- Prove the \([x]\) base case by several double-clicks (which search for applicable rules).

```
1: [] = []  = reflexive
2: [] = id[]  Fold id 1
3: rev([]) = id[]  Fold rev0 2
4: rev(rev([])) = id[]  Fold rev0 3
5: (rev • rev)[] = id[]  Fold • 4
6: [x3] = [x3]  = reflexive
7: [x3] = id[x3]  Fold id 6
8: rev([x3]) = id[x3]  Fold rev1 7
9: rev(rev[x3]) = id[x3]  Fold rev1 8
10: (rev • rev)[x3] = id[x3]  Fold • 9
11: (rev • rev)x = id x  assumption
12: (rev • rev)y = id y  assumption
13: (rev • rev)(xs ++ ys) = id(xs ++ ys)
```

\([x]\) base case done

"Fold" rule means to replace function app with corresponding definition, working backward.
Steps (working backward)

- Prove the induction step. The first few steps can be done automatically.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11:</td>
<td>((\text{rev} \cdot \text{rev})x \cdot s = \text{id} \cdot x \cdot s, (\text{rev} \cdot \text{rev})y \cdot s = \text{id} \cdot y \cdot s)</td>
<td>assumptions</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:</td>
<td>[\text{rev}(\text{rev} \cdot x \cdot s) + + \text{rev}(\text{rev} \cdot y \cdot s) = x \cdot s + + y \cdot s]</td>
<td></td>
</tr>
<tr>
<td>13:</td>
<td>[\text{rev}(\text{rev} \cdot x \cdot s) + + \text{rev}(\text{rev} \cdot y \cdot s) = \text{id}(x \cdot s + + y \cdot s)]</td>
<td>Fold id 12</td>
</tr>
<tr>
<td>14:</td>
<td>[\text{rev}(\text{rev} \cdot y \cdot s) + + \text{rev} \cdot x \cdot s) = \text{id}(x \cdot s + + y \cdot s)]</td>
<td>Fold rev'2 13</td>
</tr>
<tr>
<td>15:</td>
<td>[\text{rev}(\text{rev}(x \cdot s + + y \cdot s)) = \text{id}(x \cdot s + + y \cdot s)]</td>
<td>Fold rev'2 14</td>
</tr>
<tr>
<td>16:</td>
<td>[\text{rev} \cdot \text{rev}(x \cdot s + + y \cdot s) = \text{id}(x \cdot s + + y \cdot s)]</td>
<td>Fold \cdot 15</td>
</tr>
<tr>
<td>17:</td>
<td>[\text{rev} \cdot \text{rev} \cdot x = \text{id} \cdot x]</td>
<td>listinduction 5,10,11–16</td>
</tr>
<tr>
<td>18:</td>
<td>[\text{rev} \cdot \text{rev} = \text{id}]</td>
<td>ext 17</td>
</tr>
</tbody>
</table>
Steps (working backward)

- From here on, we need to be more explicit, apparently:

```plaintext
6: [x3]=[x3]
7: [x3]=id[x3]
8: rev([x3])=id[x3]
9: rev(rev([x3]))=id[x3]
10: (rev · rev)[x3]=id[x3]
11: (rev · rev)x=id xs, (rev · rev)ys=id ys
    ...
12: rev(rev xs) ++ rev(rev ys)=xs ++ ys
13: rev(rev xs) ++ rev(rev ys)=id(xs ++ ys)
14: rev(rev ys) ++ rev(xs) =id(xs ++ ys)
15: rev(rev(x ++ ys))=id(xs ++ ys)
16: (rev · rev)(x ++ ys) =id(xs ++ ys)
17: (rev · rev)x=id x
18: rev · rev=id
```
Steps (working backward)

- More explicit steps

6: \([x3]=[x3]\)
7: \([x3]=\text{id}[x3]\)
8: \(\text{rev}(x3)=\text{id}(x3)\)
9: \(\text{rev}(\text{rev}[x3])=\text{id}[x3]\)
10: \((\text{rev} \cdot \text{rev})[x3]=\text{id}[x3]\)
11: \((\text{rev} \cdot \text{rev})x = \text{id} x\)
12: \((\text{rev} \cdot \text{rev})y = \text{id} y\)

\[
\begin{align*}
13: \text{rev}(\text{rev} x) &+ (\text{rev} \cdot \text{rev})y = \text{id} x + y \\
14: \text{rev}(\text{rev} x) &+ \text{rev}(\text{rev} y) = \text{id} x + y \\
15: \text{rev}(\text{rev} x) &+ \text{rev}(\text{rev} y) = \text{id} x + y \\
16: \text{rev}(\text{rev} x) &+ \text{rev}(\text{rev} y) = x + y \\
17: \text{rev}(\text{rev} x) &+ \text{rev}(\text{rev} y) = \text{id}(x + y) \\
18: \text{rev}(\text{rev} y + \text{rev} x) & = \text{id}(x + y)
\end{align*}
\]
Steps (working backward)

- Obviously we are on the right track. How to close?

```
11: (rev • rev)xs = id xs, (rev • rev)ys = id ys
   ... assumptions
12: (rev • rev)xs ++ (rev • rev)ys = id xs ++ id ys
13: rev(rev xs) ++ (rev • rev)ys = id xs ++ id ys
14: rev(rev xs) ++ rev(rev ys) = id xs ++ id ys
15: rev(rev xs) ++ rev(rev ys) = id xs ++ ys
16: rev(rev xs) ++ rev(rev ys) = xs ++ ys
17: rev(rev xs) ++ rev(rev ys) = id(xs ++ ys)
18: rev(rev ys ++ rev xs) = id(xs ++ ys)
19: rev(rev(xs ++ ys)) = id(xs ++ ys)
20: (rev • rev)(xs ++ ys) = id(xs ++ ys)
```

Unfold using • 12
Unfold using • 13
Unfold using id 14
Unfold using id 15
Fold id 16
Fold rev'2 17
Fold rev'2 18
Fold • 19
Steps (working backward)

- Is this the best way? Now need to unify explicitly. Repeat two steps.
Steps (working backward)

- Now close by double-clicking a couple of times:

<table>
<thead>
<tr>
<th>Line</th>
<th>Equation</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>(rev · rev)xs = id xs, (rev · rev)ys = id ys</td>
<td>assumptions</td>
</tr>
<tr>
<td>12</td>
<td>id xs = id xs</td>
<td>= reflexive</td>
</tr>
<tr>
<td>13</td>
<td>id xs = (rev · rev)xs</td>
<td>Fold with hypothesis 11.1, 12</td>
</tr>
<tr>
<td>14</td>
<td>id ys = id ys</td>
<td>= reflexive</td>
</tr>
<tr>
<td>15</td>
<td>id ys = (rev · rev)ys</td>
<td>Fold with hypothesis 11.2, 14</td>
</tr>
<tr>
<td>16</td>
<td>id xs ++ id ys = id xs ++ id ys</td>
<td>= reflexive</td>
</tr>
<tr>
<td>17</td>
<td>id xs ++ (rev · rev)ys = id xs ++ id ys</td>
<td>rewrite backwards 15, 16</td>
</tr>
<tr>
<td>18</td>
<td>(rev · rev)xs ++ (rev · rev)ys = id xs ++ id ys</td>
<td>rewrite backwards 13, 17</td>
</tr>
<tr>
<td>19</td>
<td>rev(rev xs) ++ (rev · rev)ys = id xs ++ id ys</td>
<td>Unfold using · 18</td>
</tr>
<tr>
<td>20</td>
<td>rev(rev xs) ++ rev(rev ys) = id xs ++ id ys</td>
<td>Unfold using · 19</td>
</tr>
<tr>
<td>21</td>
<td>rev(rev xs) ++ rev(rev ys) = id xs ++ ys</td>
<td>Unfold using id 20</td>
</tr>
<tr>
<td>22</td>
<td>rev(rev xs) ++ rev(rev ys) = xs ++ ys</td>
<td>Unfold using id 21</td>
</tr>
<tr>
<td>23</td>
<td>rev(rev xs) ++ rev(rev ys) = id(xs ++ ys)</td>
<td>Fold id 22</td>
</tr>
<tr>
<td>24</td>
<td>rev(rev ys ++ rev xs) = id(xs ++ ys)</td>
<td>Fold rev2 23</td>
</tr>
<tr>
<td>25</td>
<td>rev(rev(xs ++ ys)) = id(xs ++ ys)</td>
<td>Fold rev2 24</td>
</tr>
<tr>
<td>26</td>
<td>(rev · rev)(xs ++ ys) = id(xs ++ ys)</td>
<td>Fold · 25</td>
</tr>
</tbody>
</table>
A Shorter Proof
(obtained by deferring use of induction a couple of steps)

```
1: [] = []
2: rev([]) = []
3: rev(rev([])) = []
4: [x5] = [x5]
5: rev([x5]) = [x5]
6: rev(rev[x5]) = [x5]
7: rev(rev xs) = xs, rev(rev ys) = ys
   assumptions
8: (rev(xs ++ ys)) = rev ys ++ rev xs
9: xs ++ ys = xs ++ ys
   = reflexive
10: xs ++ rev(rev ys) = xs ++ ys
   Fold with hypothesis 7.2,9
11: rev(rev xs) ++ rev(rev ys) = xs ++ ys
   Fold with hypothesis 7.1,10
12: rev(rev ys ++ rev xs) = xs ++ ys
   Fold rev'2 11
13: rev(rev(xs ++ ys)) = xs ++ ys
   [rewrite] 8,12
14: rev(rev x) = x
   listinduction 3,6,7-13
15: rev(rev x) = id x
   Fold using id 14
16: (rev • rev)x = id x
   Fold • 15
17: rev • rev = id
   ext 16
```
Automated tools such as **ACL2** can be used to do this form of proof on a computer.

ACL2 = “Applicative Common Lisp 2”

ACL2 is an interactive theorem prover based on Lisp and structural induction

Originally called the Boyer/Moore Theorem Prover, this designed has been refined continuously since 1970.

See:
http://www.cs.utexas.edu/users/moore/acl2/
ACL2 includes

- *Ordinary* Lisp execution
- *Symbolic* execution (unfolding, rewriting)
- Automated theorem proving
- Formalism for admitting axioms to the system
Sample Function Definition in ACL2

ACL2 !>
(defun app (x y)
 (cond ((endp x) y)
 (t (cons (car x)
 (app (cdr x) y))))

endp checks for the list being empty

The rex equivalent is:

app([], Y) => Y;
app([A | X], Y) => [A | app(X, Y)];
Sample ACL Ordinary Evaluations

ACL2 !>(app nil '(x y z))
(X Y Z)

ACL2 !>(app '(1 2 3) '(4 5 6 7))
(1 2 3 4 5 6 7)

ACL2 !>(app '(a b c d e f g) '(x y z))
(a b c d e f g x y z)

ACL2 !>(app (app '(1 2) '(3 4)) '(5 6))
(1 2 3 4 5 6)
Sample Property to be Proved

A theorem that asserts that function app is associative:

ACL2!>
(defthm associativity-of-app
 (equal (app (app a b) c)
 (app a (app b c))))
This can be proved using Structural Induction

- (equal (app (app a b) c) (app a (app b c)))))

- In other words,
 \[(\forall a)(\forall b)(\forall c) \text{ app(app(a, b), c) = app(a, app(b, c))}\]

- Exercise: Try proving this by hand.
(defthm associativity-of-app
 (equal (app (app a b) c)
 (app a (app b c))))

Name the formula above *1.

Perhaps we can prove *1 by induction. Three induction schemes are suggested by this conjecture. Subsumption reduces that number to two. However, one of these is flawed and so we are left with one viable candidate.

(continued)
We will induct according to a scheme suggested by (APP A B). If we let (:P A B C) denote *1 above then the induction scheme we'll use is

\[(\text{AND}\]
\[\text{(IMPLIES (AND (NOT (ENDP A))}
\[\quad (:P (CDR A) B C))
\[\quad (:P A B C))
\[\text{(IMPLIES (ENDP A) (:P A B C))}].\]

This induction is justified by the same argument used to admit APP, namely, the measure (ACL2-COUNT A) is decreasing according to the relation E0-ORD-< (which is known to be well-founded on the domain recognized by E0-ORDINALP). When applied to the goal at hand the above induction scheme produces the following two nontautological subgoals.
Subgoal *1/2
(IMPLIES (AND (NOT (ENDP A))
 (EQUAL (APP (APP (CDR A) B) C)
 (APP (CDR A) (APP B C))))
 (EQUAL (APP (APP A B) C)
 (APP A (APP B C))))).

By the simple :definition ENDP we reduce the conjecture to Subgoal *1/2'
(IMPLIES (AND (CONSP A)
 (EQUAL (APP (APP (CDR A) B) C)
 (APP (CDR A) (APP B C))))
 (EQUAL (APP (APP A B) C)
 (APP A (APP B C))))).

But simplification reduces this to T, using the :definition APP, the :rewrite rules CDR-CONS and CAR-CONS and primitive type reasoning.
Subgoal *1/1
(IMPLIES (ENDP A)
 (EQUAL (APP (APP A B) C)
 (APP A (APP B C))))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/1'
(IMPLIES (NOT (CONSP A))
 (EQUAL (APP (APP A B) C)
 (APP A (APP B C))))).

But simplification reduces this to T, using the :definition APP and primitive type reasoning.

i.e. True
Once the theorem is proved, it is saved in the system to be used as a **rewrite rule**.

The system can henceforth rewrite

```
(app (app x y) z)
```

as

```
(app x (app y z))
```
ACL2 System Architecture
the gate-level design of an academic microprocessor --- which was then fabricated and tested,

- a compiler, an assembler, a linker, and a loader for the above microprocessor,

- application programs written in the source language of the above compiler

- the ``CLI stack" -- the chaining together of the above theorems to establish correctness of applications running on a fabricated chip,

- 21 of the 22 routines in the Berkeley C String library (when compiled by gcc -o for the Motorola 68020),

- microcode programs extracted from the ROM of the Motorola CAP digital signal processor,

- the microcode for floating-point division and square root on the AMD K5,

- the RTL implementing each of the elementary floating-point operations on the AMD Athlon,

- safety-critical code involved in trainborne control software written by Union Switch and Signal,

- components of the Rockwell-Collins Avionics JEM1, the world's first Java virtual machine in silicon, and

- bootstrapping code for the IBM 4758 secure co-processor.