Complexity Theory!

- Restrict attention to recursive languages.

- How much of my favorite resource does it take a TM to decide (accept/reject) its input.

- We'll concentrate on time-complexity and then examine space-complexity.
Time Complexity

Example

\[L = \{a^i b^i \mid i \geq 0 \} \]

... length of input denoted by \(n \)

Definition

\[f(n) \in O(g(n)) \]

if \(\exists \) positive integers \(c \) and \(n_0 \) s.t. \(f(n) \leq c \cdot g(n) \) \(\forall n \geq n_0 \)
Definition:

The running time of an algorithm on a TM is a function $f : N \rightarrow N$ s.t. $f(n)$ is the maximum number of steps taken by the TM over all inputs of length n.

Definition:

$\{ L \mid L \text{ is a language decided by a TM whose running time is } O(t(n)) \}$

Example:

$\{a^i b^i \mid i \geq 0\} \in \text{TIME}(?)$
Question:

Is $\exists b^*ib \geq 0^* \in \text{TIME}(n)$?

Tell me! Tell me!
I must know!

Using just one tape!
Polynomial Time
and the Class \mathcal{P}

Definition:

\[\mathcal{P} = \bigcup_{k \geq 1} \text{TIME}(n^k) \]

\[k \in \mathbb{Z}^+ \]

Example

\[L = \{ a^i b^i \mid i \geq 0 \} \in \text{TIME}(n^2) \]

\[\Rightarrow L \in \mathcal{P} \]

Note

\[L \in \mathcal{P} \Rightarrow L \in \text{TIME}(n^k) \]

for some positive integer k.
Hey! Wanna see a neat trick? I can write myself onto a Turing Machine tape!

- Is P really of any practical consequence?
 - "P is all about deciding languages, not about solving real problems."
 - "P measures running time on a TM, not on a real computer."
 - "An n^{100} algorithm is in P, but it's not very efficient!"

In your face, theory-dude!
what is \(\mathcal{NP} \)?

Attempt \#1: \(\mathcal{NP} \) is the set of all languages (decision problems) that can be solved in exponential time.

Somebody should ask here: "Even though we know that this definition is wrong, how do you define "exponential time"?"

Attempt \#2: \(\mathcal{NP} \) is the set of all languages (decision problems) for which a solution can be verified in polynomial time.

Get outta town!
The Hamiltonian Cycle Problem...

Decision Problem:
Given a graph \(G \), does \(G \) contain a Hamiltonian cycle.

Language Problem:

\[
L = \{ \langle G \rangle \mid G \text{ contains a Hamiltonian cycle} \}
\]

Verification:

\[
\text{graph encoding length} = n \quad \text{or} \quad \text{“certificate”}
\]
Defining \(\mathsf{NP} \) Formally...

Definition: Let \(L \) be a language. A TM \(V \) is a polynomial-time verifier for \(L \) if there exists a polynomial \(p(n) \) such that:

1. For any input \((w,c)\), \(V \) halts in time \(p(1^{|w|}) \).
 - For each \(w \in L \), there exists \(c \in \Sigma^* \) such that when \((w,c)\) is written on the tape, \(V \) accepts in time \(p(1^{|w|}) \).
 - We call this "n" usually.

2. For each \(w \notin L \), \(V \) rejects \((w,c)\) in \(p(1^{|w|}) \) time for all \(c \in \Sigma^* \).

Definition: A language \(L \) is in \(\mathsf{NP} \) if there exists a polynomial-time verifier for \(L \).
Another View of \mathbb{NP}

Deterministic TM $\{p(n) \text{ steps} \}$

Nondeterministic TM

Theorem:

A language L is in \mathbb{NP} iff it is decided by some nondeterministic polynomial-time TM.

This is where the n and p come from!
Theorem:

A language \(L \) is in \(NP \) iff it is decided by some nondeterministic polynomial-time TM

Proof:

\(\Rightarrow \) Assume \(L \) is in \(NP \).
Then by definition, \(\exists \) a polynomial-time verifier \(V \) for \(L \).

\(\Leftarrow \) Assume that \(L \) is accepted in \(p(n) \) time by nondet. TM \(M \). Show that a verifier \(V \) exists.