Languages, Grammars, Parsing

Robert Keller
September 2010

Definitions

- **Alphabet**: A set of characters, such as {a, ..., z, A, ..., Z, 0, ..., 9, _, $}
- **String**: A finite ordered sequence of 0 or more characters.
- **Language**: Any set of strings over an alphabet. (The set could be infinite.)
- **Grammar**: A finite means of presenting a language.
- **Parser**: A program that determines whether a string is a member of a specific language. The operation of the program is called "parsing".

Language Examples

- A finite language: The set of all valid zip-codes.
- An infinite language: The set of all valid Racket programs.

Grammars

- Grammars are need to precisely specify infinite languages.
- Unlike finite languages, we cannot simply list every string in the language.
- Grammars can also be used to specify finite languages more succinctly.

Grammar Components

- A grammar has 4 components, (Σ, N, S, P):
 - An alphabet, Σ, called the **terminal alphabet**. Strings in the language are strings over the terminal alphabet.
 - Another alphabet, N, called the **non-terminal alphabet**.
 - The **start symbol**, S, always a member of N.
 - A set of **productions**, P, as defined next.

Productions

- A production is a rule stating how a non-terminal can be replaced with a string. The non-terminal being replaced is on the LHS of an →; the replacing string is on the RHS.
- The possible replacements are not necessarily unique.
- Examples of two productions:
 - S → '(' S ')
 - Here '(' and ')' are non-terminals.
 - S → ε
 - Here ε stands for the empty string.
Examples of Replacement

• Using the preceding two productions:
 • \(S \rightarrow ' (' S ') ' \)
 • \(S \rightarrow \varepsilon \)

• some replacement sequences (where \(\Rightarrow \) indicates a replacement occurs) are:
 • \(\frac{1}{2} \Rightarrow \varepsilon \) [remember \(\varepsilon \) is the empty string]
 • \(\frac{1}{2} \Rightarrow () \) [\(\varepsilon \) has no characters]
 • \(\frac{1}{2} \Rightarrow (()) \Rightarrow () \)

 • The underscores show which non-terminals were rewritten.
 • The entire sequence of rewrites is called a derivation.

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
</table>

• A vertical bar | (read “or”) can be used to abbreviate several productions with the same LHS.

• Example: The two productions
 • \(S \rightarrow ' (' S ') ' \)
 • \(S \rightarrow \varepsilon \)
 can be abbreviated:
 • \(S \rightarrow ' (' S ') ' | \varepsilon \)

Grammars are “Non-Deterministic”

• Grammars indicate which replacements are allowed.

• They don’t necessarily specify a unique-replacement, although they can.

• A grammar can be used as a “blueprint” for a parser program.

The Language Generated by a Grammar

• Every grammar \(G \) generates a unique language (set of strings) \(L(G) \).

• The language generated is a subset of a larger set of strings, called the yield of the grammar.

Yield of a Grammar

• The yield \(Y(G) \) of a grammar \(G \) is a set of strings defined by induction.

 • The string consisting of the start symbol \(S \) is in \(Y(G) \).

 • If \(xAz \in Y(G) \), and the grammar has a production \(A \rightarrow y \), then \(xyz \in Y(G) \).

 • The only strings in \(Y(G) \) are those obtainable by a finite sequence of applications of the above rules.

 • Viewed another way, the yield is the set of strings for which there is at least one derivation.

The Language of a Grammar

• The language \(L(G) \) of a grammar is the subset \(Y(G) \) consisting of only terminal symbols.
Example
• Terminal alphabet: {', ')
• Non terminal alphabet: {S}.
• Start symbol: S
• Productions
 • S → '(' S ')' | ε
• Yield: {ε, (S), 0, ((S)), ((0(S))), (((S))), ...}
• Language: {ε, 0, ((0(S))), ...}

Example
• Terminal alphabet: {', ')
• Non terminal alphabet: {S}.
• Start symbol: S
• Productions
 • S → '(' S ')' | SS | ε
• Yield:
• Language:

Grammar for S-Expressions
• Terminal alphabet: {', '} ∪ D
 where D is a set of symbols disjoint from {', '}.
• Non terminal alphabet: {S, C, A, L}.
• Start symbol: S
• Productions
 • C → σ
 for each σ in D
 • A → CA | C
 • S → A | '(' L ')' | S
 • L → SL | ε

Example S-Expression Derivation
• Suppose D = {'a', 'b', 'c', '1', '2'}
• Productions
 • C → | b | c | 1 | 2
 • A → CA | C
 • S → A | '(' L ')
 • L → SL | ε
• A derivation:
 S ⇒ (L)
 ⇒ (S)L
 ⇒ (()L)
 ⇒ (()S)
 ⇒ (())(S)
 ⇒ (())(L)
 ⇒ (()L)
 ⇒ (()S)
 ⇒ (())S
 ⇒ (())A
 ⇒ (()A)
 ⇒ (()A)
 ⇒ (()A)
 ⇒ (()A)
 ⇒ (()A)
 ⇒ (())A
 ⇒ (())A
 ⇒ (A)
 ⇒ (A)
 ⇒ (A)
 ⇒ (A)
 ⇒ (A)

Syntactic Categories
• Each non-terminal can be viewed as defining a set of syntactic categories, which are themselves languages.
• For the S-expression example:
 • C → σ
 C defines the set of single characters.
 • A → CA | C
 A defines the set of atoms.
 • S → '(' L ')' | A
 S defines the set of S-expressions.
 • L → SL | ε
 L defines the set of list contents.

Parsing
• A parser is a program that determines, for any input string over the alphabet, whether or not the string is in the language.
• Example (for the S-expression language):
 • (0b1) parser says "yes"
 • (b1) parser says "no"
Naïve Parsing

- Given an input string, systematically generate the yield of a grammar, roughly in order of increasing length.
- If the input string is generated, say “yes”.
- If the strings generated have gotten “long enough”, so that the input string cannot possibly be generated, say “no”.

Recursive Descent Parsing

- Naive parsing is generally too inefficient to be practically useful.
- Recursive-descent parsing is a more efficient method.
- The grammar must be designed with recursive-descent parsing in mind.

Recursive Descent Example

- Consider S expressions once more:
 - $C \rightarrow \sigma$
 C defines the set of single characters.
 - $A \rightarrow CA | C$
 A defines the set of atoms.
 - $S \rightarrow ' (' L ') | A$
 S defines the set of S-expressions.
 - $L \rightarrow SL | \epsilon$
 L defines the set of list contents.
- The top-level goal is to determine whether the input is an S expression.

Parse Functions

- For an appropriately-designed grammar, we can parse by associating a parse function with each non-terminals productions.
- These will generally rely heavily on mutual recursion.
- Each parse function has as its argument the remaining unparsed input (RUI), which it will parse left-to-right.
- At the top-level, the RUI is the entire input.

Parse Functions for S Expressions

- Productions for the atom symbol, A.
 - $A \rightarrow CA | C$
 A defines the set of atoms.
- Corresponding parse function, parse-A:
 - Call parse-C, to get a character from the RUI. If that fails, then fail.
 - If that call succeeded, then call A on the new RUI. If that succeeds, return success. Otherwise fail.

Parse Functions for S Expressions

- Productions for the start symbol, S.
 - $S \rightarrow ' (' L ') | A$
 S defines the set of S-expressions.
- Corresponding parse function, parse-S:
 - If the RUI is empty, fail.
 - If the next symbol in the RUI is ‘(’, then:
 - Get the result of parsing an L (new RUI is returned).
 - Check that there is a next symbol and it is ‘)’. If so, succeed. Otherwise fail.
 - Otherwise the result is the result of parsing an A.
Parse Functions for S Expressions

- Productions for the character symbol, C.
 - \(C \rightarrow \sigma \) where \(\sigma \) is a non-parenthesis character
- Corresponding parse function, parse-C:
 - If the RUI is empty, fail.
 - If the RUI begins with a non-paren character, succeed.

Structure of Parse Functions

- A parse function has one argument, the RUI (remaining unparsed input).
- The parse function returns 2 things:
 - an indication of success or failure
 - the new value of the RUI.

Data Abstraction for Return Values

- Define `success` as 'success'
- Define `failure` as 'failure'
- Use rule for instrumentation purposes
 - Define (succeed rule newRUI)
 - Define (fail rule RUI)
 - Define (success? result)
 - Define (failure? result)
 - Define (residualUI result)

Parse Function Implementation

- Productions for "Character": \(C \rightarrow a|b|c|...|z \)
 - (define (parse-C RUI)
 - (cond ((null? RUI) (fail 'C RUI))
 ; no more input
 ((non-paren? (first RUI)) (succeed 'C (rest RUI)))
 ; one of the desired chars
 (else (fail 'C RUI))))
 ; anything else

- Productions for "Atom": \(A \rightarrow CA | C \)
 - (define (parse-A RUI)
 - (if (null? RUI) (fail 'A RUI))
 ; no more input
 ((cond ((char=? (first RUI) 'C) (succeed 'A (rest RUI)))
 ; try a char
 (else (success? (parse-C (rest RUI))))
 ; have a char
 (let ((A-result (parse-A (residual C-result))))
 (if (success? A-result)
 (succeed 'A (residual A-result))
 ; case CA
 (succeed 'A (residual C-result))))
 ; case C
 (fail 'A RUI))))
 ; anything else

- Productions for "List Content": \(L \rightarrow SL | \epsilon \)
 - (define (parse-L RUI)
 - (if (null? RUI) (succeed 'L RUI))
 ; no more input, empty case
 ((let ((S-result (parse-S RUI)))
 ; try an S
 (if (success? S-result)
 (parse-L (residual S-result))
 ; case SL
 (succeed 'L RUI))))
 ; empty case
Parse Function Implementation

```scheme
(define (parse-S RUI) ; Productions for "S Expression"
  (cond
    ((null? RUI) (fail 'S RUI)) ; no more input, fail
    (left-paren? (first RUI)) ; have (, try L
      (let* (
          (L-result (parse-L (rest RUI)))
          (residue (residual L-result))
        )
        (if (success? L-result)
            (if (and (not (null? residue)) ; have (L, try ')
                (right-paren? (first residue))) ; have L, try ')' (L)
              (succeed 'S (rest residue)) ; case (L)
              (fail 'S RUI)) ; (L, but no '), fail
          (fail 'S RUI)))) ; (but no L, fail
      (else ; no (, try A
        (let (
            (A-result (parse-A RUI)))
          (if (success? A-result)
              (succeed 'S (residual A-result)) ; have A, success
              (fail 'S RUI)))))))) ; no A, fail
```

What about Whitespace?

- Although it is usually left to informal treatment, a grammar might not be totally accurate unless whitespace is taken into account.

- For example, in our S-expression grammar so far, we couldn't parse a string of the form (ab cd), because the grammar will not recognize the whitespace gap.

Two Kinds of Whitespace

- There are places where whitespace is **essential** and places where it is **optional**.

- When one whitespace character is essential, additional whitespace characters are often optional.

Whitespace Productions

- Let W stand for optional whitespace. The productions are:
 - \(W \rightarrow \varepsilon \) (i.e. \(\varepsilon \) is a blank character)

- Other characters, such as tab and formfeed might also be considered whitespace.

- Let E stand for essential whitespace. We'll assume that essential is generally followed by optional.
 The production for E then would have the form
 - \(E \rightarrow \varepsilon \) \(W \)
 where W is as defined above.

Delimiters

- A delimiter is something that breaks up the flow of text.

- Whitespace can be a delimiter, but so can other characters such as `(' and ')' in the case of S-expressions.

- To include all possibilities would significantly complicate the grammar.

S-Expressions Revised

- Original grammar:
 - \(C \rightarrow \alpha \) \(\alpha \) the set of single characters.
 - \(A \rightarrow CA | \varepsilon \) \(A \) defines the set of atoms.
 - \(S \rightarrow (L) | A \) \(S \) defines the set of S-expressions.
 - \(L \rightarrow SL | \varepsilon \) \(L \) defines the set of list contents.

- Modified grammar, with W as optional whitespace:
 - \(C \rightarrow \alpha \)
 - \(A \rightarrow CA | \varepsilon \)
 - \(S \rightarrow W (L) \) \(W \) | \(W W \)
 - \(L \rightarrow SL | W \)
 - We don't need to add W to the L productions, because it is accounted for in the S productions.
Optional–Whitespace Parser

; optional-whitespace parser
(define (skip-white RUI)
 (cond
 ((null? RUI) '())
 (char-whitespace? (first RUI) (skip-white (rest RUI)))
 (else RUI)))

; char-whitespace? is built-in

Revised S–Expression Parse Function

; Productions for "S Expression": S -> W (L W) W | W A W where W represents optional whitespace
(define (parse-S RUI)
 (let ((RUI (skip-white RUI))
 (success? L-result (parse-L (skip-white (rest RUI))))
 (success? A-result (parse-A RUI))
 (result (skip-white (residual L-result))))
 (cond
 ((null? RUI) (fail 'S RUI)) ; no more input, fail
 ((left-paren? (first RUI))
 (let* ((L-result (parse-L (skip-white (rest RUI))))
 (result (skip-white (residual L-result))))
 (if (success? L-result)
 (if (and (not (null? result))
 (right-paren? (first result))
 (case L
 (fail 'S RUI)
 (true 'S RUI)
 (false 'S RUI)))
 (fail 'S RUI))))
 (else
 (let ((A-result (parse-A RUI))
 (result (skip-white (residual A-result))))
 (if (success? A-result)
 (if (and (not (null? result))
 (right-paren? (first result))
 (case L
 (fail 'S RUI)
 (true 'S RUI)
 (false 'S RUI)))
 (fail 'S RUI))))))))

Precedence

Semantic Considerations

• Often a parser has to do more than just determine whether a string is in the language.

 It also may be tasked with providing a meaning for the string.

Example: S–Expression Semantics

• The meaning of an S–expression could be the internal form used by Racket.

 The parser can construct this meaning using cons and a few other built-in functions.

Categories for Infix Arithmetic Grammars

• Define a grammar for additive expressions, where + is the add operator, e.g. the language is:
 \{a, b, a+a, a+b, b+a, b+b, a+a+a, \ldots\}

• Let V be a non–terminal representing the category of "variables".
Categories for Infix Arithmetic Grammars

- Define a grammar for additive and multiplicative expressions, where + and * are the add and multiply operators, e.g. the language is the previous one, union with:

 \{a^a, a+a^a, a^a+a, \ldots\}

Precedence

- We want * to have precedence over +.
- Put another way, * has a stronger binding strength than +.
- \(a^b+c\) should be interpreted as if \((a^b)+c\)
 not \(a^*(b+c)\)
- This is accomplished by constructing the grammar in a particular way:
 Higher precedence operators are “farther from the start symbol”.

Derivation Trees

Grouping or “Associativity”

- We might want an operator such as + to be grouped a particular way:
 e.g. should \(a + b + c\) be interpreted as if
 \((a + b) + c\)
 or as if
 \(a + (b + c)\)
- These things can be controlled by the grammar and/or parser.