From Sequential Logic

- State-transition diagrams and tables
- Acceptor examples
Acceptance

A string (sequence of symbols) is accepted by a DFA iff there is a path from the one initial state to some accepting state with labels corresponding to that path.
The language accepted by a DFA is the set of all strings accepted by it.

A language is a subset of Σ^*, the set of all finite strings of symbols in Σ.

A language could be finite or infinite, depending on the DFA.
Language Examples

- The set of all strings over \{0, 1\} such that every 0, if followed by any symbol, is followed by a 1.

- The set of all strings over \{0, 1\} such that the number of symbols is a multiple of 4.

- The set of all strings that contain the same number of 0’s and 1’s.
Language Examples

- The set of all strings over \{0, 1\} such that every 0, if followed by any symbol, is followed by a 1.
Language Examples

The set of all strings over \(\{0, 1\}\) such that the number of symbols is a multiple of 4.
Language Examples

- The set of all strings with the same number of 0’s and 1’s.
Regularity

- Some languages are accepted by a DFA.
- For some, there is no DFA.
- If there is a DFA, the language is called “regular“.
Regular vs. Non-Regular Examples

- Regular: The set of all strings over \(\{0, 1\} \) such that the number of symbols is a multiple of 4.

- Non-Regular: The set of all strings with the same number of 0's and 1's.
Regularity and Finiteness

Finite = Finite Set of Strings

Regular = Finite-State
When is a Regular Language Not-Finite?

- There must be a loop in the acceptor.
- There must be a state in the loop reachable from the initial state.
- There must be an accepting state reachable from a state in the loop.
When is a Regular Language Not-Finite?

![Diagram showing a finite automaton with states labeled 'initial', 'loop', and 'accepting'. Transitions labeled with 0 and 1.]

- Initial state: 1
- Loop state: 0
- Accepting state: 1
Two strings x, y are called **distinguishable** iff there a string z such that xz is accepted, but yz is not.

If two strings are not distinguishable, they are called **equivalent**.
Example

- If two strings lead from the initial state to the same state, they are equivalent, e.g. 10 and 10000 below.

- Contrapositively, if two strings are distinguishable, they cannot possibly lead to the same state from the initial state.
States and Equivalence

- All strings that are mutually equivalent can be lumped together in a single equivalence class.

- If two strings x, y lead from the initial state to some common state, the strings must be equivalent.

- Thus, there are at least as many states as there are equivalence classes.
States and Equivalence

states \rightarrow classes

- string
- states
- equivalence class
- class representative (a string)
- distinguishable pair
When is a Language not Regular?

- The language must have an infinite set of equivalence classes.
- The classes correspond to an infinite set of strings, no two of which are equivalent (i.e. every pair of which is distinguishable).
Example of Non-Regular

- The set of all strings with the same number of 0’s and 1’s.

- 0 is distinguishable from 00, since 01 is in, but 001 is out.

- Similarly, 0^m is distinguishable from 0^n for any pair $m \neq n$.

- There is an infinite set of distinguishable pairs.
Characterization of Finite-State Machines by “Regular Expressions”

- Regular expressions are a machine-independent way of specifying a language.

- They are often used in textual pattern-matching applications.

- They are closely related to grammars, but the form of recursion is limited to “iterative” forms only.
Regular Expressions

- Kleene was also a principal developer of the field of recursion (computability) theory.
Kleene pronounced his last name /klay'nee/.

/klee'nee/ and /kleen/ are extremely common mispronunciations. His first name is /steev'n/, not /stef'n/.

His son, Ken Kleene <kenneth.kleene@umb.edu>, wrote: "As far as I am aware this pronunciation is incorrect in all known languages. I believe that this novel pronunciation was invented by my father."
A regular expression (RE) is always defined with respect to a finite alphabet of symbols, Σ. The definition is inductive:

- **Basis:**
 - Any symbol in Σ is an RE.
 - The special symbol λ is an RE (often ε is used instead of λ).
 - The special symbol $\hat{\varepsilon}$ is an RE.

- **Induction step:** If R and S are RE’s, then so are:
 - RS
 - $R \mid S$
 - R^*
Regular Expression Examples

- Take $\Sigma = \{0, 1\}$.
- Basis:
 - Any symbol in Σ is an RE: 0 1
 - The special symbol λ is an RE: λ
 - The special symbol $\hat{\cdot}$ is an RE: $\hat{\cdot}$
- Induction step: If R and S are RE’s, then so are:
 - RS: 00 01 0001 1010 $1(00 \mid 11)^*0$
 - $R \mid S$: $00 \mid 11$ $0 \mid 1 \mid \lambda$
 - R^*: 0^* 01^*0 $(00 \mid 11)^*$
Meaning of Regular Expressions(1)

- Each regular expression \(R \) denotes a language (set of strings) \(L(R) \) over its alphabet:

- Basis:
 - A symbol \(\sigma \) in \(\Sigma \) denotes the language of one string of one letter: \(L(\sigma) = \{\sigma\} \).
 - The special symbol \(\lambda \) denotes the empty string (no letters): \(L(\lambda) = \{\lambda\} \).
 - The special symbol \(\hat{\ } \) denotes the empty set (no strings): \(L(\hat{\ }) = \hat{\} \).
Meaning of Regular Expressions (2)

- Induction step: Suppose R and S are regular expressions and $L(R)$ and $L(S)$ have been defined. Then

 $L(RS) = \{xy \mid x \in L(R) \text{ and } y \in L(S)\}$

- $L(R \mid S) = L(R) \cup L(S)$

- $L(R^*) = \{\lambda\} \cup L(R) \cup L^2(R) \cup L^3(R) \ldots$

 where $L^k(R)$ means the language formed by concatenating k strings, each one from $L(R)$.
Suppose that we have a grammar in which auxiliary symbol r derives the strings in $L(R)$ and auxiliary symbol s derives the strings in $L(S)$.

Then:

- Adding $t \rightarrow r \ s$ would make t derive the strings in $L(RS)$.
- Adding $t \rightarrow r \mid s$ would make t derive the strings in $L(R \mid S)$.
- Adding $t \rightarrow \{r\}$ would make t derive the strings $L(R^*)$.
Note on Precedence in Regular Expressions

- It is common to omit parentheses.
- The binding order is:
 - * binds most tightly
 - juxtaposition is next
 - | binds most weakly
Examples of RE’s, with Meanings

- **0101**
 The set of one string “0101”.

- **0101 | 1010**
 The set of two strings, “0101” and “1010”.

- **1(0101 | 1010)0**
 The set of two strings, “101010” and “110100”.

- **01*0**
 The set of strings that begin and end with 0 and contain a continuous run of 1’s (of length 0 or more).
Examples of RE’s, with Meanings

- 0^*1^*
 The set of strings in which no 1 is followed by a 0.

- $0^*1^*0^*1^*$
 The set of strings in which at most one 1 is immediately followed by a 0.

- $0^*(100^*)^*$
 The set of strings in which every one is followed by a 0.
Try These

- $(0^*10^*1)^*0^*$
- $((0 \mid 1)(0 \mid 1))^*$
- $0^*10^* \mid 1^*01^*$
- $(0^*1^*)^*$
Give Regular Expressions (over alphabet \{0, 1\}) for

- The set of strings with at most two 0’s
- The set of strings with more than two 0’s
- The set of strings in which 0’s and 1’s strictly alternate
Kleene’s Remarkable Result

- The languages accepted by finite-state acceptors and the languages denoted by regular expressions are the same thing.
In other words:

- Part I: The language accepted by any finite-state acceptor can be expressed as a regular expression.
- Part II: For every regular expression, there is a finite state acceptor that accepts the language denoted by the expression.
The language accepted by any finite-state acceptor can be expressed as a regular expression.
Given a finite-state acceptor, how to derive a regular expression?
DFA \rightarrow RE Example

![DFA Diagram]

- States: a, b, d, c
- Edges:
 - a to b with label 0
 - b to d with label 1
 - d to b with label 1
 - d to c with label 0
 - b to c with label 1

- Initial state: a
- Final state: c
Step 1: Add Isolated Start and End States

View each arc as having a regular expression label, not just a single symbol.
Ultimate goal

A single regular expression
Elimination Step

- Pick a node for elimination.
- Add to the regular expression of each pair of nodes having a path through that node an additional expression component representing those paths.
Before: $P =$ paths from f to t

added paths from f to t:
This has to be done for all pairs \(f, t \) including the case where \(f = t \).
Eliminate c

\[
\begin{align*}
\lambda & \rightarrow a & \lambda & \rightarrow b & 1 & \rightarrow c & \lambda & \rightarrow e \\
0 & \rightarrow d & 1 & \rightarrow b & 0 & \rightarrow c & 1 & \rightarrow e
\end{align*}
\]
c Eliminated

Diagram:
- States: s, a, b, d, e
- Transitions:
 - s to a: λ
 - a to b: 0
 - a to d: 1
 - b to 11
 - d to 0 | 10
 - c to e: 1
Eliminate a
a Eliminated

Graph:
- Start state: s
- States: a, b, d, e
- Transitions:
 - s to a: 0
 - s to d: 1
 - a to b: 1 | 00
 - b to d: 0 | 10
 - d to b: 11
 - d to e: 01
 - e is a final state
Eliminate d

Diagram:

- States: s, d, b, e
- Edges:
 - s to d: 0
 - d to b: 11
 - b to e: 1
 - d to d: 01

Transitions:
- From s to d: 0
- From d to b: 11
- From b to e: 1
- From d to d: 01
d Eliminated

\[0 \mid 1(01)^* (1 \mid 00)\]

\[11 \mid (0 \mid 10)(01)^* (1 \mid 00)\]

\[s\] -> \[b\]

\[d\]

\[e\]
Eliminate b

0 | 1(01)*(1 | 00)

11 | (0 | 10)(01)*(1 | 00)

s

b

e
b Eliminated (= done)

\[(0 \mid 1(01)^*(1 \mid 00)) (11 \mid (0 \mid 10)(01)^*(1 \mid 00))^* 1\]
Proof of Part II

- For every regular expression R, there is an FSA that accepts $L(R)$, the language denoted by R.
Non-Deterministic FSAs

- An easy way to prove part II is to appeal to the idea of a non-deterministic finite-state acceptor (NFA):

 - Part IIa: For every regular expression R, there is an NFA that accepts $L(R)$.
 - Part IIb: For every NFA N there is a (deterministic) finite-state acceptor that accepts $L(N)$.
NFAs

- A non-deterministic finite-state acceptor (NFA) is a finite-state acceptor with free-choice of transitions:
 - A given state may have more than one transition leaving with the same symbol, or
 - A state may be left spontaneously via a λ transition.
NFAs

A given state may have more than one (or even no) transition leaving with a given symbol.

The machine gets to choose which one to take.
NFAs

● A state may be left spontaneously via a λ transition.

The machine can leave state a spontaneously and go to b, or it can absorb input 0 and go to c.
An NFA accepts an input sequence iff there is some path from some initial state (an NFA can have more than one) to some accepting state.

This machine accepts 01, even though there is a path to a non-accepting state.
Proof of Part IIa: Structural Induction

- Part IIa: For every regular expression R, there is an NFA that accepts $L(R)$.
- This proof is by **structural induction** on the formation of regular expressions.
 - **Basis:**
 - Any symbol in Σ is an RE.
 - The special symbol λ is an RE.
 - The special symbol \hat{e} is an RE.
 - **Induction step:** If R and S are RE's, then so are:
 - RS
 - $R \mid S$
 - R^*
We construct an accepting NFA for each RE introduced in the definition.

- Basis:
 - Any symbol in Σ is an RE.
 - The special symbol λ is an RE.
 - The special symbol $\hat{\sigma}$ is an RE.

This is neither a string nor an alphabet symbol.

You can't get here from there.
Proof of Part IIa (2)

- We construct an accepting NFA for each RE introduced in the definition.
- Induction step: If R and S are RE’s, then so are:
 - RS
 - R | S
 - R*
- We assume that NFA’s exist for R and S, and construct them for these three cases:
 - RS

![Diagram of NFA for RS](image)
Proof of Part IIa (3)

- We assume that NFA’s exist for R and S, and construct them for these three cases:
 - $R | S$

![Diagram](image.png)
Proof of Part IIa (4)

- We assume that NFA’s exist for R and S, and construct them for these three cases:
 - R^*
Proof of Part IIb (1)

- For every NFA N there is a (deterministic) FSA that accepts $L(N)$.

- The idea is that for an NFA N we can construct a FSA D accepting $L(N)$ by “simulating in parallel” all the choices the NFA could make. An input sequence is accepted iff any of those choices led to acceptance in N.
Proof of Part IIb (2)

To simulate an NFA, we construct D to have as its states subsets of the states of N. The transitions of D emulate all transitions for N “in parallel”. For example, suppose that \{0, 1, 2\} is the alphabet.

Definition of f, the state transition for D:
\[f(S, \sigma) = \{ q' \mid (\exists q \in S) \ q \xrightarrow{\sigma} q' \ \text{in N} \} \]
Proof of Part IIb (3)

- An accepting state in D is any that has an accepting state of N as a member.
Proof of Part IIb (4)

- The initial state in D is the set of all states reachable from some initial state in N by the empty sequence (i.e. including \(\lambda \) transitions)

In N:
- The machine can choose either initial state.

In D:
- \(\{a, b, c\} \)
The Complete Construction for a Simple Example

N:

D:
A More Complex Example with a Loop

N:

D:
This Completes the Proof of Kleene’s Theorem

- We now know that the following are equivalent:
 - L is a language denoted by some regular expression.
 - L is a language accepted by an NFA.
 - L is a language accepted by an FSA.
Example: Regular Expression to FSA (1)

- Construct an FSA for the RE $01^*0 \mid 0^*10^*$
- By inspection we can do NFA's for 01^*0 and 0^*10^*:
Example: Regular Expression to FSA (2)

Below, any unspecified transitions go to {}.

01*0 | 0*10*
“Combination Lock” Type Problems

- Consider a sequential combination lock without an explicit reset. Regardless of what came before, if the last digits entered correspond to the combination, the lock opens.
- Example combination: 0 1 0 1 0 1 1
- Design a DFA for this lock
Regular Expressions in Everyday Practice:

- *Unix* `egrep` used for searching for *lines containing* matching strings in files

- **Do, e.g.** `man egrep` to get this information on a Unix box:
 - Most single characters match themselves
 - (exceptions: . *, [], \, ^, $)
 - . matches any character, except new-line
 - ^ matches beginning of line (must occur first)
 - $ matches end of line (must occur last)

- **Examples:**
 - `egrep 'elle' filename`
 - `egrep 'll.*ll' filename` .* is like Σ*
 - `egrep 'll$' filename`
 - `egrep '^Ll' filename`
 - `egrep 'aa|bb|cc' filename`
 - `egrep '(aa|bb)c' filename`
Regular Expressions in Everyday Practice:
Iteration constructs

- * The preceding item will be matched zero or more times.
- + The preceding item will be matched one or more times.
- ? The preceding item is optional and matched at most once.
- {n} The preceding item is matched exactly n times.
- {n,} The preceding item is matched n or more times.
- {n,m} The preceding item is matched at least n times, but not more than m times.
- etc.
Closure Properties

- Based on their connection to regular expressions, regular languages are closed under \cup, concatenation, \ast.
- They are also closed under:
 - complementation $\Sigma^* - R$
 - intersection \cap
 - substitution (of arbitrary strings for letters)
Product Construction

- Similar to subset construction.
- Can be used to show closure under \cap, \cup, $-$, and any other Boolean combination.
- The product of two DFA’s is a DFA that simulates both in tandem.
- Its accepting states are some combination of accepting states of the two DFA’s.
State set will be \(\{a, b\} \times \{c, d, e\} \).
Product Construction

Accepting states depending on which operation is desired.