Logic and Decidability

CS 81: Computability and Logic
December 2, 2010
Recall:

Provability:

\[A_1, \ldots, A_n \vdash B \]

Validity

\[A_1, \ldots, A_n \models B \]
Decidability

$A_1, \ldots, A_n \vdash B$

Key question:

Given A_1, \ldots, A_n, is B provable using a fixed set of logical rules?

E.g., is there a decision algorithm?
Propositional Logic is Decidable

Proof: Truth tables, completeness.
Predicate Logic is not decidable

Proof: Reduce the PCP to Predicate Logic!

Given a PCP instance in binary, produce a formula that is provable iff the instance has a solution.
On the logic side, we will use

- a constant symbol \(e \)
- Two unary functions \(f_0 \) and \(f_1 \)
- A binary predicate \(P \)

We will use \(f_0 \), \(f_1 \), and \(e \) to encode binary strings.

We will force \(P \) to be true when the two arguments could the top and bottom of a sequence of dominos.
Encoding Binary Strings into Logic (by example)

\[w = 000111 \]

\[f_w(e) = f_1(f_1(f_0(f_0(f_0(e)))))) \]
Translation

The PCP instance

\[
\begin{array}{ccc}
 s_1 & & s_n \\
 t_1 & & t_n \\
\end{array}
\]

The formula

\[
P(f_{s_1}(e), f_{t_1}(e)) \land \cdots \land P(f_{s_n}(e), f_{t_n}(e))
\]

\[
\land
\]

\[
(\forall u, v. \ P(u, v) \rightarrow P(f_{s_1}(u), f_{t_1}(v)) \land \cdots \land P(f_{s_n}(u), f_{t_n}(v)))
\]

\[
\rightarrow
\]

\[
\exists z. \ P(z, z)
\]
Completeness and Incompleteness
Theories

Theory:

A collection of formulas derivable from a set Γ of axioms.

Implicitly or explicitly specifies constants, functions, relations.

Γ might be infinite

Any proof can only use a finite subset of Γ

We normally expect recognizable/enumerable axioms.

Extending a theory means adding more axioms.

Hence, more things might be provable!
Peano Axioms

∀x. ¬(S(x) = 0)

∀x,y. S(x) = S(y) → x = y

A[0/x] ∧ (∀n. A[n/x] → A[S(n)/x])

→

(∀n. A[n/x])

For every formula A!
Semigroup Theory

\(\forall x, y, z. \ x + (y + z) = (x + y) + z \)
Monoid Theory

\[\forall x, y, z. \quad x + (y + z) = (x + y) + z \]

\[\forall x. \quad (x + 0) = x \]
Group Theory

∀x, y, z. \quad x + (y + z) = (x + y) + z

∀x. \quad (x + 0) = x

∀x. \exists y. \quad x + y = 0
Commutative Group Theory

\(\forall x,y,z. \ x + (y + z) = (x + y) + z \)

\(\forall x. \ (x+0) = x \)

\(\forall x. \ \exists y. \ x+y = 0 \)

\(\forall x,y. \ x + y = y + x \)
Linear Order Theory

∀x. ¬(x < x)
∀x,y. (x < y) ∨ (x = y) ∨ (y < x)
∀x,y,z. ((x < y) ∧ (y < z)) → (x < z)
Dense Linear Order Theory

\forall x. \neg(x < x)

\forall x,y. (x < y) \lor (x = y) \lor (y < x)

\forall x,y,z. ((x < y) \land (y < z)) \rightarrow (x < z)

\exists x,y. x < y

\forall x,y. (x < y) \rightarrow \exists z. (x < z) \land (z < y)
Dense Linear Order Theory without Endpoints

\[\forall x. \neg(x < x) \]
\[\forall x, y. (x < y) \lor (x = y) \lor (y < x) \]
\[\forall x, y, z. ((x < y) \land (y < z)) \rightarrow (x < z) \]
\[\exists x, y. x < y \]
\[\forall x, y. (x < y) \rightarrow \exists z. (x < z) \land (z < y) \]
\[\forall x. \exists z. (z < x) \]
\[\forall x. \exists z. (x < z) \]
Recall:

Predicate Logic

... is Sound.

If $\Gamma \vdash B$ then $\Gamma \models B$

... is Complete (Gödel's Completeness Theorem)

If $\Gamma \models B$ then $\Gamma \vdash B$
Validity Revisited

If B is a closed formula, then either:

$\Gamma \models B$

$\Gamma \models \neg B$

Neither.

A theory is said to be **negation-complete** (complete for short) if it always rules out the third case for all closed B.

That is, for every closed formula B, either $\Gamma \models B$ or $\Gamma \models \neg B$.

That is, for every closed formula B, either $\Gamma \vdash B$ or $\Gamma \vdash \neg B$.
Dense Linear Order Theory w/o Endpoints is (Negation-) Complete

∀x. ¬(x < x)
∀x,y. (x < y) ∨ (x = y) ∨ (y < x)
∀x,y,z. ((x < y) ∧ (y < z)) → (x < z)
∃x,y. x < y
∀x,y. (x < y) → ∃z. (x < z) ∧ (z < y)
∀x. ∃z. (z < x)
∀x. ∃z. (x < z)
Presburger Arithmetic is Complete

∀x. ¬(0 = x+1)

∀x,y. x+1 = y+1 → x=y

∀x. x+0 = x

∀x,y. (x+y)+1 = x+(y+1)

→

(∀n. A[n/x]) + 1 = y + 1 → x = y
Linear Order Theory isn’t complete.

∀ₓ. ¬(ₓ < x)
∀ₓ,ᵧ. (ₓ < y) ∨ (x = y) ∨ (y < x)
∀ₓ,ᵧ,z. ((ₓ < y) ∧ (y < z)) → (x < z)
Why Completeness Matters

Most theories aren’t complete.

But completeness is a nice property.

If the axioms can be enumerated, so can the theorems.

“Is B provable” becomes decidable.

Enumerate theorems and wait for B or $\neg B$.

(Of course, this assumes the theory is consistent.)
Gödel’s First Incompleteness Theorem, 1931
(Refined by Rosser, 1936)

No consistent theory with recognizable axioms extending number theory is (negation-)complete.

Consequence:

If you want to do math, you generally need at least addition, multiplication, and induction on natural numbers.

Any such theory will be (negation-) incomplete.
Number Theory?

Like Presburger Arithmetic + Multiplication

\(\forall x. x \times 0 = 0 \)

\(\forall x, y. (x \times (y+1)) = ((x \times y) + x) \)
Gödel’s Proof Setup

Main idea: “Gödel Numbering”

- encode logical formulas (strings) as numbers.
- encode proofs (lists of formulas) as numbers.
Gödel’s Proof Setup (continued)

He showed how to define a (big and complicated) formula $\Pi(p,f,a)$ true exactly when

- f encodes a formula $P(v)$ with one free variable v.
- p encodes a proof of $P(a)$

By the way:

- Π is built using partial recursive functions!
- These turn out to be the functions naturally definable in number theory.
The Proof Strategy(1)

• $\Pi(p,f,a)$ means that p is a proof of $P(a)$, where f encodes P.
• Define $\Delta(f) := \forall p. \neg \Pi(p,f,f)$ [i.e., there is no proof of $P(f)$]
• Let d be the Gödel number of Δ.
• Is $\Delta(d)$ provable?
 • $\Delta(d) = \forall p. \neg \Pi(p,d,d)$ [i.e., there is no proof of $\Delta(d)$]
 • If it’s provable then it’s true, but then there’s no proof.
 • So, no.
The Proof Strategy (2)

- $\Pi(p,f,a)$ means that p is a proof of $P(a)$, where f encodes P.
- Define $\Delta(f) := \forall p. \neg \Pi(p,f,f)$ \hspace{1em} [i.e., there is no proof of $P(f)$]
- Let d be the Gödel number of Δ.
- Well, then, is $\neg \Delta(d)$ provable?
 - $\neg \Delta(d) = \neg \forall p. \neg \Pi(p,d,d)$ \hspace{1em} [i.e., there is a proof of $\Delta(d)$]
 - But we just showed there isn’t a proof $\Delta(d)$.
 - So, no.
Gödel’s Second Incompleteness Theorem

Within any consistent extension of number theory,

- there is a logical formula \(\text{Con} \) that expresses the consistency of the theory,
- but \(\text{Con} \) is not provable in the theory.

Corollary: In any extension of number theory, \(\text{Con} \) is provable if and only if ...

Note: number theory can be proved consistent...if you're willing to believe set theory is consistent.
Decidability of Number Theory

Number Theory isn’t complete.

We can’t decide whether A is a theorem by simply listing theorems and looking for A or ¬A.

But might theorem-hood still be decidable using some other algorithm?
Recall:

✓ We can encode TM configurations as numbers.

✓ Primitive Recursive functions exist
 ✓ R(x) = configuration one step beyond configuration x.
 ✓ T(i,x) = configuration i steps beyond configuration x.
 ✓ P(x) = whether configuration x is halting (0 or 1)

✓ Computation length = μi. [P(T(i, x_0)) = 0]

✓ Final configuration = T(μi. [P(T(i, x_0)) = 0], x_0)
Number Theory is Undecidable

Number Theory is strong enough to define all primitive recursive functions.

Halting is then the logical formula

$$\exists i. \, P(T(i, x_0)) = 0$$