Applied Logics

Chris Stone

September 28, 2010
Outline

- How can there be more than one logic? Why would you want more than one?
- Constructive Logic
 - Research idea: RZ
- Linear Logic
- Temporal Logic
 - Research idea: CSL
Computable Mathematics

Traditional CS is closely connected to *discrete* mathematics

Data is finite (though arbitrarily large)
- Lists
- Trees
- Hash tables
- Bigints (arbitrarily large integers)
Computable Mathematics

Traditional CS is closely connected to *discrete* mathematics

Data is finite (though arbitrarily large)
- Lists
- Trees
- Hash tables
- Bigints (arbitrarily large integers)

But what if you want to compute with
- Real numbers
- Infinite sequences and limits
- Integration and differentiation
- Arbitrary continuous functions
- Arbitrary open (or closed, or compact) subsets of the plane
- Differential equations
Problems with Floating-Point: Limited Range

Floating-point numbers are a finite subset of the rationals, i.e,

\[\pm (2^{24} + m)2^n \quad \left\{ \begin{array}{l}
0 \leq m < 2^{24} \\
-140 \leq n \leq 103
\end{array} \right. \]
Problems with Floating-Point: Limited Range

Floating-point numbers are a *finite* subset of the *rationals*, i.e,

\[\pm (2^{24} + m)2^n \begin{cases}
0 \leq m < 2^{24} \\
-140 \leq n \leq 103
\end{cases} \]

\[
\begin{align*}
340282346638528859811704183484516925440 \\
340282326356119256160033759537265639424 \\
\vdots \\
1/2^{126} \\
+0 \\
-0 \\
1/2^{126} \\
\vdots \\
-340282326356119256160033759537265639424 \\
-340282346638528859811704183484516925440
\end{align*}
\]
Problems with Floating-Point: Approximate Answers

Round-off and cancellation matter!

```
// 1/1 + 1/2 + ... + 1/(N-1)
float sum1 = 0.0;
for (int n = 1; n < N; ++n)
  sum1 += 1.0 / float(n);

// 1/(N-1) + ... + 1/2 + 1/1
float sum2 = 0.0;
for (int n = N-1; n > 0; --n)
  sum2 += 1.0 / float(n);
```

When $N = 10$, $\text{sum1} = 15.4037$ and $\text{sum2} = 18.8079$
Problems with Floating-Point: Approximate Answers

Round-off and cancellation matter!

```
// 1/1 + 1/2 + ... + 1/(N-1)
float sum1 = 0.0;
for (int n = 1; n < N; ++n)
    sum1 += 1.0 / float(n);

// 1/(N-1) + ... + 1/2 + 1/1
float sum2 = 0.0;
for (int n = N-1; n > 0; --n)
    sum2 += 1.0 / float(n);
```

When $N = 10^8$, $\text{sum1} = 15.4037$ and $\text{sum2} = 18.8079$
Some Topics of Computable Mathematics

1. How can a computer represent
 "Real" real numbers
 "Real" complex numbers?
 Infinite sequences of reals?
 Differentiable functions?
 Arbitrary open (or closed, or compact) subsets of the plane?
 ...

2. What operations are computable?
 Multiplication of reals?
 Square root of a complex?
 Finding a zero of a function?
 Integral of a function over a closed interval?
 Intersection of two open sets?
 ...

3. Can we do these efficiently (at least in practice)?
Some Topics of Computable Mathematics

1. How can a computer represent
 - “Real” real numbers
 - “Real” complex numbers?
 - Infinite sequences of reals?
 - Differentiable functions?
 - Arbitrary open (or closed, or compact) subsets of the plane?
 - ...

2. What operations are computable?
 - Multiplication of reals?
 - Square root of a complex?
 - Finding a zero of a function?
 - Integral of a function over a closed interval?
 - Intersection of two open sets?
 - ...

3. Can we do these efficiently (at least in practice)?
Some Topics of Computable Mathematics

1. How can a computer represent
 - “Real” real numbers
 - “Real” complex numbers?
 - Infinite sequences of reals?
 - Differentiable functions?
 - Arbitrary open (or closed, or compact) subsets of the plane?
 - ...

2. What operations are computable?
 - Multiplication of reals?
 - Square root of a complex?
 - Finding a zero of a function?
 - Integral of a function over a closed interval?
 - Intersection of two open sets?
 - ...

Some Topics of Computable Mathematics

1. How can a computer represent
 - “Real” real numbers
 - “Real” complex numbers?
 - Infinite sequences of reals?
 - Differentiable functions?
 - Arbitrary open (or closed, or compact) subsets of the plane?
 - ...

2. What operations are computable?
 - Multiplication of reals?
 - Square root of a complex?
 - Finding a zero of a function?
 - Integral of a function over a closed interval?
 - Intersection of two open sets?
 - ...

3. Can we do these efficiently (at least in practice)?
Representing Real Numbers

What does it mean for a computer to “have” a real number?
Representing Real Numbers

What does it mean for a computer to “have” a real number?

What is a reasonable representation for a “real” real number?
Representing Real Numbers

What does it mean for a computer to “have” a real number?

What is a reasonable representation for a “real” real number?

First idea: infinite sequence of decimal digits

\[
\frac{1}{2} = [5, 0, 0, 0, 0, 0, 0, \ldots]
\]
\[
\frac{1}{30} = [0, 3, 3, 3, 3, 3, 3, 3, \ldots]
\]
Representing Real Numbers

What does it mean for a computer to “have” a real number?

What is a reasonable representation for a “real” real number?

First idea: infinite sequence of decimal digits

\[
\frac{1}{2} = [5, 0, 0, 0, 0, 0, 0, \ldots] \\
\frac{1}{30} = [0, 3, 3, 3, 3, 3, 3, 3, \ldots]
\]

In practice, we’d produce digits on demand, e.g.,

\[
\text{real} \equiv \text{nat} \rightarrow \{0, \ldots, 9\}
\]
Critique

The operation “Divide by 10” is computable! (How?)

1, 4, 1, 5, 9, 2, 6, 5, 3, 5, …
Critique

The operation “Divide by 10” is computable! (How?)

$1, 4, 1, 5, 9, 2, 6, 5, 3, 5, \ldots$

The operation “Multiply by 3” is not!

\[
\begin{align*}
0, 3, 1 & \times 3 = 0, 9, 3 \\
0, 3, 3, 1 & \times 3 = 0, 9, 9, 3 \\
0, 3, 3, 3, 1 & \times 3 = 0, 9, 9, 9, 3 \\
0, 3, 9 & \times 3 = 1, 1, 7 \\
0, 3, 3, 9 & \times 3 = 1, 0, 1, 7 \\
0, 3, 3, 3, 9 & \times 3 = 1, 0, 0, 1, 7
\end{align*}
\]
Critique

The operation “Divide by 10” is computable! (How?)

\[1, 4, 1, 5, 9, 2, 6, 5, 3, 5, \ldots\]

The operation “Multiply by 3” is not!

\[
\begin{align*}
0, 3, 1 & \times 3 = 0, 9, 3 \\
0, 3, 3, 1 & \times 3 = 0, 9, 9, 3 \\
0, 3, 3, 3, 1 & \times 3 = 0, 9, 9, 9, 3 \\
\hline
0, 3, 9 & \times 3 = 1, 1, 7 \\
0, 3, 3, 9 & \times 3 = 1, 0, 1, 7 \\
0, 3, 3, 3, 9 & \times 3 = 1, 0, 0, 1, 7
\end{align*}
\]

Suppose you check 100 digits and see 0, 3, 3, 3, 3, \ldots
What’s the first digit of the output?
Better Representations of Reals

As just a few examples among many

- Infinite sequences of \textit{signed} digits (e.g., -9 to 9)

- Rapidly converging Cauchy Sequences:

\[
\{ \ a \in \mathbb{Q}^N \ | \ \forall 0 \leq i < j. \ |a_i - a_j| < 2^i \ \}
\]

(even better: use dyadic rationals!)

- Converging infinite sequences of open intervals (with rational endpoints)
Key Results

Given “good” representations of reals:

1. The basic operations (+, −, ×, ÷) are computable.
Key Results

Given “good” representations of reals:

1. The basic operations ($+$, $-$, \times, \div) are computable.
2. So are square-root, exponential, sine,
Key Results

Given “good” representations of reals:

1. The basic operations (+, −, ×, ÷) are computable.
2. So are square-root, exponential, sine,
3. Comparisons (=, <, ≤, etc.) on \(\mathbb{R} \) are *not* computable.
Key Results

Given “good” representations of reals:

1. The basic operations (+, −, ×, ÷) are computable.
2. So are square-root, exponential, sine,
3. Comparisons (=, <, ≤, etc.) on \mathbb{R} are not computable.
4. Every computable function $\mathbb{R} \to \mathbb{R}$ is continuous
Key Results

Given “good” representations of reals:

1. The basic operations (+, −, ×, ÷) are computable.
2. So are square-root, exponential, sine,
3. Comparisons (=, <, ≤, etc.) on \(\mathbb{R} \) are not computable.
4. Every computable function \(\mathbb{R} \to \mathbb{R} \) is continuous
5. The floor function \(\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{N} \) is not computable.
Key Results

Given “good” representations of reals:

1. The basic operations ($+$, $-$, \times, \div) are computable.
2. So are square-root, exponential, sine,
3. Comparisons ($=$, $<$, \leq, etc.) on \mathbb{R} are not computable.
4. Every computable function $\mathbb{R} \rightarrow \mathbb{R}$ is continuous
5. The floor function $\lfloor \cdot \rfloor : \mathbb{R} \rightarrow \mathbb{N}$ is not computable.
6. Every computable function $\mathbb{R} \rightarrow \mathbb{N}$ is constant.
Key Results

Given “good” representations of reals:

1. The basic operations ($+, −, ×, ÷$) are computable.
2. So are square-root, exponential, sine, . . .
3. Comparisons ($=, <, \leq$, etc.) on \mathbb{R} are not computable.
4. Every computable function $\mathbb{R} \rightarrow \mathbb{R}$ is continuous
5. The floor function $\lfloor \cdot \rfloor : \mathbb{R} \rightarrow \mathbb{N}$ is not computable.
6. Every computable function $\mathbb{R} \rightarrow \mathbb{N}$ is constant.
7. There is no computable operator that finds a zero of every continuous $f : [0, 1] \rightarrow \mathbb{R}$ with $f(0) < 0 < f(1)$.
Key Results

Given “good” representations of reals:

1. The basic operations (+, −, ×, ÷) are computable.
2. So are square-root, exponential, sine,
3. Comparisons (=, <, ≤, etc.) on \(\mathbb{R} \) are \textit{not} computable.
4. Every computable function \(\mathbb{R} \rightarrow \mathbb{R} \) is \textit{continuous}
5. The floor function \([·] : \mathbb{R} \rightarrow \mathbb{N} \) is \textit{not} computable.
6. Every computable function \(\mathbb{R} \rightarrow \mathbb{N} \) is constant.
7. There is no computable operator that finds a zero of every \textit{continuous} \(f : [0, 1] \rightarrow \mathbb{R} \) with \(f(0) < 0 < f(1) \).
8. Integrals on finite intervals are generally computable; derivatives of computable functions may not be.
Key Results

Given “good” representations of reals:

1. The basic operations (+, −, ×, ÷) are computable.
2. So are square-root, exponential, sine,
3. Comparisons (=, <, ≤, etc.) on \mathbb{R} are not computable.
4. Every computable function $\mathbb{R} \to \mathbb{R}$ is continuous.
5. The floor function $\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{N}$ is not computable.
6. Every computable function $\mathbb{R} \to \mathbb{N}$ is constant.
7. There is no computable operator that finds a zero of every continuous $f : [0, 1] \to \mathbb{R}$ with $f(0) < 0 < f(1)$.
8. Integrals on finite intervals are generally computable; derivatives of computable functions may not be.
Key Results

Given “good” representations of reals:

1. The basic operations (+, −, ×, ÷) are computable.
2. So are square-root, exponential, sine, . . .
3. Comparisons (=, <, ≤, etc.) on \(\mathbb{R} \) are not computable.
4. Every computable function \(\mathbb{R} \rightarrow \mathbb{R} \) is continuous.
5. The floor function \(\lfloor \cdot \rfloor : \mathbb{R} \rightarrow \mathbb{N} \) is not computable.
6. Every computable function \(\mathbb{R} \rightarrow \mathbb{N} \) is constant.
7. There is no computable operator that finds a zero of every continuous \(f : [0, 1] \rightarrow \mathbb{R} \) with \(f(0) < 0 < f(1) \).
8. Integrals on finite intervals are generally computable; derivatives of computable functions may not be.

These are the same results that one can get by constructive reasoning.
Why Work with Constructive Logic?

- Every classical proof can be turned into a constructive proof
 - Just need to stick some ¬¬’s.
Why Work with Constructive Logic?

- *Every* classical proof can be turned into a constructive proof
 - Just need to stick some ¬'s.
 - Instead of proving a solution exists, you prove that not all values can be non-solutions.
Why Work with Constructive Logic?

- Every classical proof can be turned into a constructive proof
 - Just need to stick some \(\neg \neg \)’s.
 - Instead of proving a solution exists, you prove that not all values can be non-solutions.
Why Work with Constructive Logic?

- Every classical proof can be turned into a constructive proof
 - Just need to stick some $\neg\neg$'s.
 - Instead of proving a solution exists, you prove that not all values can be non-solutions.

- Compare:

<table>
<thead>
<tr>
<th>Theorem</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem</td>
<td>Theorem</td>
</tr>
<tr>
<td>Every function $f : [0, 1] \to \mathbb{R}$ is continuous*</td>
<td>Every computable function f from the computable reals between 0 and 1 to the computable reals is continuous with a computable modulus of continuity.*</td>
</tr>
</tbody>
</table>
Why Work with Constructive Logic?

- *Every* classical proof can be turned into a constructive proof
 - Just need to stick some \(\neg\)'s.
 - Instead of proving a solution exists, you prove that not all values can be non-solutions.

- Compare:

 Theorem

 Every function \(f : [0, 1] \rightarrow \mathbb{R} \) *is continuous*

 Theorem

 Every computable function \(f \) *from the computable reals between 0 and 1 to the computable reals is continuous with a computable modulus of continuity.*

- Close connection between computable and constructive.
The RZ System

(Program developed with Andrej Bauer, University of Ljubljana)

- **Input:** Specifications in constructive logic
 - Sets, functions, predicates exist
 - Certain (constructive) axioms hold

- **Output:** Interfaces describing code
 - Representations must exist
 - Functions operating on these representations must exist
 - They must satisfy certain (classical!) properties.
Formal Basis: Realizability

Realizability dates back to Kleene, as an attempt to interpret constructive logic classically.

Embarrassingly short summary of a rich topic:

- A realizer of a mathematical object
 (e.g., set, vector, tuple, group, smooth manifold)
 is an implementation.

- A realizer of a mathematical proposition
 (e.g., \(\forall n \in \mathbb{N}. \forall x \in \mathbb{R}. \exists y \in \mathbb{R}. |x - y^2| < \frac{1}{n} \))
 is its “constructive” content.

Realizers are tedious to describe by hand. Hence, RZ.
RZ Example: A Decidable Set

Parameter s : Set.
Axiom decide:
 forall a b : s, (a = b) \ not (a = b).

type s
val decide : s -> s -> bool
 // forall a b : ||s||,
 // if decide a b then
 // a =s= b
 // else
 // not (a =s= b)
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative (\(f(x, y) = f(y, x) \))
 - Idempotent (\(f(x, x) = x \))
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative \(f(x, y) = f(y, x) \)
 - Idempotent \(f(x, x) = x \)

Interpretation: “finite sets” of items without decidable equality.
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative \((f(x,y) = f(y,x))\)
 - Idempotent \((f(x,x) = x)\)

Interpretation: “finite sets” of items without decidable equality.
- Suppose you want a “set” of exact real numbers
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative \(f(x,y) = f(y,x) \)
 - Idempotent \(f(x,x) = x \)

Interpretation: “finite sets” of items without decidable equality.

- Suppose you want a “set” of exact real numbers
- Only possibility: a list, possibly with duplicates (why?)
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative (\(f(x,y) = f(y,x) \))
 - Idempotent (\(f(x,x) = x \))

Interpretation: “finite sets” of items without decidable equality.

- Suppose you want a “set” of exact real numbers
- Only possibility: a list, possibly with duplicates (why?)
- Can’t reliably compute the sum (not idempotent)
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative (\(f(x, y) = f(y, x) \))
 - Idempotent (\(f(x, x) = x \))

Interpretation: “finite sets” of items without decidable equality.

- Suppose you want a “set” of exact real numbers
- Only possibility: a list, possibly with duplicates (why?)
- Can’t reliably compute the sum (not idempotent)
- Can’t reliably compute the size
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

► The empty set
► A way to add an element to a set
► A “fold” or “reduce” operation, for binary operators that are
 ► Commutative (\(f(x, y) = f(y, x) \))
 ► Idempotent (\(f(x, x) = x \))

Interpretation: “finite sets” of items without decidable equality.

► Suppose you want a “set” of exact real numbers
► Only possibility: a list, possibly with duplicates (why?)
► Can’t reliably compute the sum (not idempotent)
► Can’t reliably compute the size
► Can’t bound the size (as a deterministic function of the set)
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative \((f(x,y) = f(y,x))\)
 - Idempotent \((f(x,x) = x)\)

Interpretation: “finite sets” of items without decidable equality.

- Suppose you want a “set” of exact real numbers
- Only possibility: a list, possibly with duplicates (why?)
- Can’t reliably compute the sum (not idempotent)
- Can’t reliably compute the size
- Can’t bound the size (as a deterministic function of the set)
- *Can* compute the max or min
RZ Example: Finitely enumerable sets

The axioms (not shown) yield a data structure for finite “sets” supporting:

- The empty set
- A way to add an element to a set
- A “fold” or “reduce” operation, for binary operators that are
 - Commutative (\(f(x,y) = f(y,x) \))
 - Idempotent (\(f(x,x) = x \))

Interpretation: “finite sets” of items without decidable equality.

- Suppose you want a “set” of exact real numbers
- Only possibility: a list, possibly with duplicates (why?)
- Can’t reliably compute the sum (not idempotent)
- Can’t reliably compute the size
- Can’t bound the size (as a deterministic function of the set)
- *Can* compute the max or min
- *Can* compute empty/non-empty
RZ Example: Exact Reals

work by Andrej Bauer and Istok Kavkler

- Axiomatize the (constructive) real numbers
- Run this through RZ
- Hand-write implementations that match the interfaces

Goal: An efficient implementation of exact real arithmetic with a strong theoretical basis.
Modal Logic: Logics of Possible Worlds
Propositions About Aliens

- Aliens are among us (now).
- Aliens may eventually be among us.
- Aliens might always be among us.
- Aliens could eventually be always among us.
- Aliens will always be among us.
- If faster-than-light travel is invented, aliens will eventually be among us.
New Quantifiers

<table>
<thead>
<tr>
<th></th>
<th>Eventually True</th>
<th>Invariably True</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Path</td>
<td>$\text{EF } p$</td>
<td>$\text{EG } p$</td>
</tr>
<tr>
<td></td>
<td>Possibly</td>
<td>Potentially Always</td>
</tr>
<tr>
<td>All Paths</td>
<td>$\text{AF } p$</td>
<td>$\text{AG } p$</td>
</tr>
<tr>
<td></td>
<td>Inevitably</td>
<td>Invariably</td>
</tr>
</tbody>
</table>

![Diagram showing temporal progression](image)

TIME

- **EF**: Eventually True
- **EG**: Invariably True
- **AF**: All Paths
- **AG**: Inevitably

- **Some Path**: Possibly
- **All Paths**: Potentially Always
Aliens
EF Aliens
AF Aliens
EG Aliens
AG Aliens
AG (not Aliens)
EF(AG Aliens)
AG(EF Aliens)
Model Checkers (Spin, SMV, Uppaal,...)

Particularly successful in hardware verification and protocol verification.

- Start with finite-state systems
 - Explicit states \((n = 3)\) vs. symbolic states \((3 < x \leq 4)\)
 - “Finite” includes millions or billions of states, or more
 - Transitions can be bits of computer code

- Automatically verify properties, using
 - Exhaustive search of reachable states (as necessary)
 - Clever representations (e.g., BDDs)
 - Abstractions

- Need a language of properties: usually some form of temporal logic
CSL: Checkable Sequence Language

with Bob Keller, Heather Justice (HMC ’09), Daniel Furlong (HMC ’11), Andrew Carter (HMC ’12), Yu-Wen Tung (JPL)

- Spacecraft have constraints:
 - “Don’t run both heaters at the same time”
 - “Never open the hatch during the launch phase”
 - “The antenna must be recalibrated at least once per hour”
 - “Don’t power the thruster for more than one hour”
CSL: Checkable Sequence Language

with Bob Keller, Heather Justice (HMC ’09), Daniel Furlong (HMC ’11), Andrew Carter (HMC ’12), Yu-Wen Tung (JPL)

- Spacecraft have constraints:
 - “Don’t run both heaters at the same time”
 - “Never open the hatch during the launch phase”
 - “The antenna must be recalibrated at least once per hour”
 - “Don’t power the thruster for more than one hour”

- Current JPL strategy: simulate each command sequence
 - Ignores nondeterminism/unknowns/failure modes
CSL: Checkable Sequence Language

with Bob Keller, Heather Justice (HMC ’09), Daniel Furlong (HMC ’11), Andrew Carter (HMC ’12), Yu-Wen Tung (JPL)

- Spacecraft have constraints:
 - “Don’t run both heaters at the same time”
 - “Never open the hatch during the launch phase”
 - “The antenna must be recalibrated at least once per hour”
 - “Don’t power the thruster for more than one hour”

- Current JPL strategy: simulate each command sequence
 - Ignores nondeterminism/unknowns/failure modes

- CSL: a (Java-like) domain-specific language designed
 1. for spacecraft simulations
 2. to be model-checkable
Linear Logic: A Logic of Resources
Compare

If $10 \rightarrow \text{book}$ and $10 \rightarrow \text{movie ticket}$, then $10 + 10 \rightarrow \text{(book and movie ticket)}$.
Compare

If $10 \rightarrow \text{book}$ and $10 \rightarrow \text{movie ticket}$, then
$10 + 10 \rightarrow (\text{book and movie ticket})$.

If $p \rightarrow q$ and $p \rightarrow r$, then
$p \rightarrow (q \text{ and } r)$
Compare

If $10 \rightarrow \text{book}$ and $10 \rightarrow \text{movie ticket}$, then $10 + 10 \rightarrow (\text{book and movie ticket})$.

If $p \rightarrow q$ and $p \rightarrow r$, then $p \rightarrow (q \text{ and } r)$

If $10 \rightarrow \text{book}$ and $10 \rightarrow \text{movie ticket}$, then $10 \rightarrow (\text{book and movie ticket})$.
Compare

If $10 \rightarrow \text{book}$ and $10 \rightarrow \text{movie ticket}$, then
$10 + 10 \rightarrow (\text{book and movie ticket})$.

If $p \rightarrow q$ and $p \rightarrow r$, then
$p \rightarrow (q \text{ and } r)$

If $10 \rightarrow \text{book}$ and $10 \rightarrow \text{movie ticket}$, then
$10 \rightarrow (\text{book and movie ticket})$.

[If first prize in a raffle is a book; second prize a ticket]
winning-ticket $\rightarrow (\text{book or movie ticket})$.
Linear Connectives

\[p \otimes q \quad \text{Both} \ p \text{ and } q \text{ simultaneously} \]
\[p \& q \quad \text{One of } p \text{ or } q \text{ (your choice)} \]
\[p \oplus q \quad \text{One of } p \text{ or } q \text{ (not your choice)} \]
\[p \rightarrow q \quad q \text{ follows if I use } p \text{ exactly once} \]
\[!p \quad \text{Zero or more copies of } p, \text{ as needed} \]
An Example (due to Patrick Lincoln)

Fixed-Price Menu: $5
Hamburger
Coke
Fries (All-you-can-eat)
Onion Soup or Salad
Dessert of the Day (Pie or Ice Cream)
An Example (due to Patrick Lincoln)

Fixed-Price Menu: $5
 Hamburger
 Coke
 Fries (All-you-can-eat)
 Onion Soup or Salad
 Dessert of the Day (Pie or Ice Cream)

\[
D \otimes D \otimes D \otimes D \otimes D \otimes D
\rightarrow
H \otimes C \otimes !F \otimes (O \& S) \otimes (P \oplus I)
\]
An Example (due to Patrick Lincoln)

Fixed-Price Menu: $5
Hamburger
Coke
Fries (All-you-can-eat)
Onion Soup or Salad
Dessert of the Day (Pie or Ice Cream)

\[
\begin{align*}
D \otimes D \otimes D \otimes D \otimes D \otimes D \\
\rightarrow \\
H \otimes C \otimes !F \otimes (O \& S) \otimes (P \oplus I)
\end{align*}
\]

Note: The US Government gets to assume $!D$. You don’t.
Sample Applications

Linear type systems for programming languages: make “proper” use of resources or your program won’t compile/run:

- Memory used must be relinquished
- Disk files opened must be closed
- Resources cannot be ignored: use or release.

Describing Stateful Computation: A piece of program code like

\[x = x + 1 \]

can be modeled as a function

\[\text{Memory} \to \text{Memory} \]

or, more accurately,

\[\text{Memory} \to \circ \text{Memory} \]

Other applications: concurrency, linguistics, …