Computation Histories and PCP
(not Probabilistically Checkable Proofs)
(also not Angel Dust)

CS 81: Computability and Logic
November 23, 2010
Computation History

✓ Step-by-step recording of a TM computation.
✓ Used to show more problems not decidable.
We can describe the configuration of any TM using a string $C = \lambda q \in \Gamma^*$.

$x \in \Gamma^*$ = symbols to the left of head
$q \in Q$ = current control state
$y \in \Gamma^*$ = symbols under and to the right of head

Over the course of a computation, we have

$\cdots \Rightarrow x_1 q_1 y_1 \Rightarrow x_2 q_2 y_2 \Rightarrow x_3 q_3 y_3 \Rightarrow \cdots$

If the TM halts, we can represent the whole history of the computation as a single (finite) string!

Traditionally written $\#C_1 \#C_2 \#C_3 \# \cdots \#C_n \#$
Checking a History

✓ Checker: a Turing Machine \(C \) that, given \(<M, h>\), checks whether \(h \) is a history of TM \(M \).

✓ Consecutive states should be equal, except around the head (where the change corresponds to the transition table of \(M \)).

✓ Can check whether \(h \) is a halting (or an accepting) history by looking at the last control state.
Digression: LBAs

In fact, the CH can be checked for validity by a less-than-general TM called an LBA.

LBA = “Linear Bounded Automaton,” a TM that can only use the part of the tape containing input.

An LBA can have a large tape alphabet and can “mark” tape cells. It just can’t grow its tape.

More powerful than a DFA

- Number of potential states grows with input size
- DFA wouldn’t be able to check a computation history.
Accepting for LBAs

\[A_{LBA} = \{ \langle M, w \rangle \mid M \text{ a LBA accepting } w \} \text{ is decidable.} \]

Proof: When running \(M \) on \(w \), there are at most

\[n := |Q| \times |\Gamma|^{|w|} \times |w| \]

distinct “states” during the computation.

So,

Run \(M \) on \(w \).

If computation takes longer than \(n \) steps, it's in an infinite loop; \(M \) doesn't accept \(w \).
Emptiness for LBAs

$E_{LBA} = \{ <M> \mid M \text{ a LBA, } L(M) = \emptyset \}$ isn’t decidable.

Proof: $A_{TM} \leq E_{LBA}$.
All_{CFG} = \{ <G> \mid G \text{ a CFG, } L(G) = \Sigma^* \} \text{ is undecidable.}

Proof: $A_{TM} \leq A_{CFG}$.

- Key: given $<M,w>$ create a PDA/CFG for strings that aren’t accepting computation histories!
 - PDA accepts strings that
 - Don’t start with q_0w
 - Or, don’t end with $xq_{accept}y$
 - Or, two successive configurations don’t match properly
 - Hack: need to reverse every other configuration.
 - The grammar for this PDA is Σ^* iff M,w has no finite, accepting history.
EQ_{CFG}

Eq_{CFG} = \{ <G_1, G_2> \mid L(G_1) = L(G_2) \} is undecidable.

Proof: All_{CFG} \leq EQ_{CFG}.
Post Correspondence Problem
Emil Post

Named after logician Emil Post (1897-1954)

- studied fundamental models of computation
- “scooped” by Gödel, Turing, and Church
Why PCP?

- Trivial problem to state
 - Looks nothing like Turing Machines
 - A child can understand it
 - Superficially, doesn’t look that hard

- Can reduce PCP to other problems, showing them undecidable
PCP
(not a Probabilistically Checkable Proofs)
(not Angel Dust)

Given a set of “dominos” (pairs of strings), find a sequence of dominos so that the top strings and the bottom strings match.

Theorem: PCP is undecidable.
Proof: Halting \leq MPCP \leq PCP
Modified PCP (MPCP)

Like PCP, but solution starts with first domino.
The following MPCP instance has no solution.
MPCP \leq PCP

Given an instance of MPCP, solve by translating dominos and doing PCP.
Halts \leq MPCP

- Idea: if a TM halts, it has a computation history
- Given a $<M,w>$, construct dominos whose solution would yield such a history (on top and bottom); use MPCP-solver to check for a solution.
The Dominos

✔ First domino: set up the initial state

![Diagram showing initial state with symbols: #, q0w#]

✔ Helper dominos: copy unchanged parts of the tape from C_i to C_{i+1}. (optional: expand the tape)

![Diagram showing helper dominos with symbols: a, b, c, _, #, _#]
More Dominos

For each transition \(q,x \rightarrow q', y, R \)

\[
\begin{array}{c}
\text{previous config} \\
qx \\
yq' \\
\end{array}
\]

For each transition \(q,x \rightarrow q', y, L \)

\[
\begin{array}{c}
aqx \\
q'ay \\
\end{array}
\quad \quad \quad
\begin{array}{c}
bqx \\
q'by \\
\end{array}
\]

\[\ldots\]
Completion Dominos

✓ Technical “Trick”

✓ When we reach a halting state h, we delete the configuration (one symbol at a time) until it disappears.

✓ For each halting state h, and each symbol x, we need

\[
\begin{array}{c}
hx \\
h \\
\h \# \\
\h \#
\end{array}
\begin{array}{c}
xh \\
h \\
\h \# \\
\h \#
\end{array}
\]

✓ Finally,
Example: $w=11$