Parsing & PDA

No, the other PDA.
No, not that one either.

November 4, 2010
Assume we have a string in L whose shortest parse tree has height $\geq |V| + 1$. [height = edges]
Final questions:

(1) How do we know v and y aren't both ε?

E.g.,

$R \Rightarrow P$

$P \Rightarrow Q$

$Q \Rightarrow R$

$R \Rightarrow^* x$

(2) Is there a point beyond which all strings have “tall” parse trees?
Regular Grammars

A grammar is said to be regular if its rules are of the following forms:

\[
\begin{align*}
 X & \rightarrow a \\
 X & \rightarrow \varepsilon \\
 X & \rightarrow aY
\end{align*}
\]
Example

S → 1B
B → 1B
B → 0C
C → 0S
S → 0S
C → 1B
C → ε
Context-Free Grammars

An unrestricted grammar consists of

1. A set V of variables (a.k.a. nonterminals)
2. A disjoint set Σ (of terminals)
3. A set of rules of the form $LEFT \rightarrow RIGHT$ where $LEFT \in (V \cup \Sigma)^+$ and $RIGHT \in (V \cup \Sigma)^*$
4. One designated $S \in V$, called the start variable (a.k.a. start symbol)

If every $LEFT$ is a single variable, the grammar is said to be context-free.
Rewriting Strings

✅ If we have a rule $\text{LEFT} \rightarrow \text{RIGHT}$, we can replace LEFT by RIGHT inside any string:

$$\alpha\text{LEFT}\beta \Rightarrow \alpha\text{RIGHT}\beta$$

✅ The language of a grammar G is the set

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

✅ The same language L might be the language of many different grammars.

✅ L is said to be a **context-free language** if it can be generated by at least one context-free grammar.
CFG Example

S → ε
S → 0B
S → 1A
A → 0S
A → 1AA
B → 1S
B → 0BB

What is the start symbol?
What are the terminals and nonterminals?
What strings does this grammar generate?
The Parsing Problem

✓ Given a grammar and a string
 ✓ Is the string in the language.
 ✓ Usually, produce a “proof”
 ✓ Parse tree or some abstraction thereof.
Parse Tree vs. AST

<expr> ::= <term>
| <expr> + <term>

<term> ::= <factor>
| <term> * <factor>

<factor> ::= <int>
| (<expr>)

42
Naive Parsing

- Backtracking search.
 - Try all ways to derive the string.

- Inefficient.

- Harder to implement that you might think...
Bogus Backtracking

S -> Aa | Ba
A -> a | c | ac
B -> Bb | b

Consume_S():
 try Consume_A(), then consume a
 if this fails, try Consume_B(), then consume a

Consume_A():
 try consume a
 if this fails, try consume c
 if this fails, try consume a then consume c

Consume_B():
 try Consume_B(), then consume b
 if this fails, try consume b
LL(k) Grammars

- If each Consume function “knew” the right choice
 - we’d never need to backtrack
 - we’d never get tangled in infinite loops
 - It would be easy to write correct Consume functions
 - Our parser would run in linear time.

- We say that a grammar is **LL(k)** if, by “peeking ahead” no more than k tokens, we can guarantee a decision that is
 - correct
 - unique (unambiguous)

- A language is LL(k) if there exists at least one LL(k) grammar.

S → aA | bB
LL(k) Grammars?

S → E $
E → n
 | plus E E
 | times E E
S → A
A → a
 | x A
B → b
S → B
S → A
| B
A → a
 | x A
B → b
| y B
S → E $
E → n
 | n + E
 | n
S → A
| B
A → a
 | x A
B → b
S → B
S → A
| B
A → a
 | x A
B → b
| y B
S → E $
E → E + E
E → n
 | E * E
 | n
S → E $
E → E + E
E → n
 | E * E
 | n
Recursive Descent

Naive backtracking works for LL(k) grammars!

\[S \rightarrow s \mid a \, B \, \$ \]
\[B \rightarrow d \mid c \, B \, B \]

Consume_S():
 try to consume s
 if this fails, consume a, Consume_B(), then consume $ \$

Consume_B():
 try to consume d
 if this fails, consume c, Consume_B(), then Consume_B()
Predictive Parsing

✓ Generalization of Recursive Descent.
✓ Stack of predictions, initially S.
✓ At each step, predict or match.
✓ Succeed if we run out of input & predictions at the same time.
Q: If regular languages are recognized by finite-state machines, what abstract machines recognize the context-free languages?

A: Pushdown Automata (PDAs)

- Finite state machine + stack
- Transitions
 - Depend on the state and input symbol and top of stack!
 - Changes state and removes/replaces/ top of stack.
- Accepting states as before (or accept on empty stack)
- In general, can be nondeterministic.
Example

Using a state machine and a stack, how can we recognize $\{ 0^n1^n \mid n \geq 0 \}$?
Official Definition

A PDA is a tuple \((Q, \Sigma, \Gamma, q_0, F, \delta)\)

- \(Q\) is a finite set of states
- \(\Sigma\) is a finite alphabet
- \(\Gamma\) is a finite “stack” alphabet
- \(q_0 \in Q\) is a start state
- \(F \subseteq Q\) is a set of accepting states
- \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\}))\)
Using a state machine and a stack, how can we recognize \{ 0^n1^n \mid n \geq 0 \}?

\[\Gamma = \{0, \$\} \]

\[q_0 \xrightarrow{\varepsilon, \varepsilon} q_1 \]

\[q_1 \xrightarrow{0, \varepsilon} 0 \]

\[q_3 \xrightarrow{\varepsilon, \$} q_2 \]

\[q_2 \xrightarrow{1, \varepsilon} \varepsilon \]

\[q_2 \xrightarrow{1, 0} \varepsilon \]
Example

Using a state machine and a stack, how can we recognize \(\{ ww^R \mid w \in \Sigma^* \} \)?

\[
\begin{array}{c}
q_0 & \xrightarrow{\varepsilon, \varepsilon} & q_1 & \xrightarrow{\varepsilon, \varepsilon} & q_2 \\
& & & & \\
& & & \xrightarrow{0, \varepsilon} 0 & \\
& & & \xrightarrow{1, \varepsilon} 1 & \\
& & & \xrightarrow{0,0} \varepsilon & \\
\Gamma = \{0, \$\} & & & \xrightarrow{\varepsilon, \varepsilon} \varepsilon & \\
q_0 & \xrightarrow{\varepsilon, \$} q_3 & & & q_2 \xrightarrow{1,1} \varepsilon
\end{array}
\]
PDA vs CFG

✓ PDAs recognize all context-free languages.
 ✓ Given a grammar, construct a PDA to do predict-match parsing
 ✓ Use nondeterminism to always guess the correct prediction!
 (No backtracking officially required)

✓ PDAs recognize only context-free languages.
 ✓ Turn the PDA into a grammar that simulates it.
 ✓ See the book for details.
 ✓ Basically, for each pair of states (p,q), the nonterminal A_{pq} produces strings that get you from p to q starting and ending with an empty stack.