Still more on Regular Languages

CS 81: Computability and Logic

October 21, 2010
Representing Regular Languages: Conclusion

NFAs

DFAs

Regular Expressions
Removing States

- Pick a state q to remove.
- For every incoming/outgoing pair
- Replace by the direct edge
Closure Properties

✓ A family of languages is a set of languages.
 ✓ The family of all finite languages
 ✓ The family of all languages
 ✓ The family of all regular languages

✓ A family F is closed under an operation if applying the operation to languages in F always produces a result in F.
Example: Finite Languages

Are the finite languages closed under:
- Union? \((A \cup B)\)
- Intersection? \((A \cap B)\)
- Concatenation \((AB)\)
- Star? \((A^*)\)
- Complement? \((A^c)\)
Closure Properties for Regular Languages

✓ Regular languages are closed under
 ✓ Concatenation
 ✓ Union
 ✓ Star
 ✓ Complement
 ✓ Intersection

✓ Proofs: Consider the corresponding automata...
Complement?
Complement
Intersection
Abstract Machines

✓ Abstraction of computation.
✓ Simplest form: Recognizers

\[\text{abbaabb...} \rightarrow \text{Black Box}\]

(Light goes on or off after each symbol)
Recall

$$L_w := \{ y \in \Sigma^* | wy \in L \}$$

$$\forall y \in \Sigma^*. \quad y \in L_w \iff wy \in L$$

$$L_{uv} = (L_u)_v$$
Intrinsic States

$$\Sigma = \{a\}$$

$$L = \{a^{3n} \mid n \geq 0\}$$

$$L_e = \{e, a, aaa, aaaaaa, \ldots\}$$

$$L_a = \{aa, aaaa, aaaaaaaa, \ldots\}$$

$$L_{aa} = \{a, aaaa, aaaaaaa, \ldots\}$$

$$L_{aaa} = \{e, aa, aaaa, aaaaaa, \ldots\}$$

$$L_{aaaa} = \{aa, aaaa, aaaaaaa, \ldots\}$$

$$\ldots$$

$$L_w := \{y \in \Sigma^* \mid wy \in L\}$$

$$\forall y \in \Sigma^*. \ y \in L_w \iff wy \in L$$

$$L_{uv} = (L_u)_v$$
The resulting machine is deterministic and minimal.
A Different Language

\[\Sigma = \{ a, b \} \]
\[L = \{ a^n b^n \mid n \geq 0 \} \]

\[L_b = L_{bb} = L_{bbb} = \cdots = L_{ba} = L_{baa} = L_{bbaab} = \emptyset \]

\[L_{ab} = L_{aabb} = L_{aaabbb} = \cdots = \{ \varepsilon \} \]

\[L_\varepsilon = \{ \varepsilon, ab, aabb, aaabbb, \ldots \} \]
\[L_a = \{ b, abb, aabbb, \ldots \} \]
\[L_{aa} = \{ bb, abbb, aabbbb, \ldots \} \]
\[L_{aaa} = \cdots \]

\[L_{aab} = L_{aaabb} = L_{aaaabbb} = \cdots = \{ b \} \]
\[L_{aab} = L_{aaabb} = \cdots = \{ bb \} \]
\[L_{aaaab} = L_{aaaaabb} = \cdots = \{ bbb \} \]
Theorem [Myhill-Nerode]:

A language is regular iff \(\{ L_w \mid w \in \Sigma^* \} \) is finite.

Proof:

If: For any language, we can construct a state machine from \(\{ L_w \mid w \in \Sigma^* \} \). If this set is finite, we get a DFA.

Only if: Assume we have a DFA for L. Run w through the DFA, reaching some state q. Then \(L_w = L_q \). Since there are only finitely many \(L_q \)'s, there can only be finitely many different \(L_w \)'s.
State Minimization

✓ If two states have the same language, they can be merged without changing the language of the state machine.
Example
One Minimization Algorithm

Assume all states are mergable unless there’s evidence they’re not otherwise.

Accepting vs. nonaccepting

One symbol takes us to two states known to be different.
More Complex Example
More Minimization
Mazes

✓ Suppose you enter a maze of twisty passages, all alike. (but with doors that open from only one side)

✓ You happen to know that this maze has exactly 19 rooms. You start wandering and pass through 27 rooms. What can you conclude?

✓ This wandering has brought you to an exit. What can you conclude about other solutions to the maze?

✓ Was there anything special about the numbers 19 and 27?
A “Theorem” About Finite Mazes

For every finite maze, there is a number p such that:

For every path through the maze s with $|s| \geq p$:

The path s contains at least one loop starting and ending within the first p steps.
Finite Automata as Mazes

Diagram of a finite automaton with states AB, ABD, ABCD, C, D, and transitions labeled with 'a', 'b', and '∅'.
Pumping Lemma

If \(L \) is a regular language, then there exists a number \(p \) such that:

For every \(s \in L \) with \(|s| \geq p \):

There’s at least one way to decompose \(s \) into \(xyz \) where

\[
|y| > 0 \quad \text{and} \\
|xy| \leq p \quad \text{and} \\
x^iyz \in L \text{ for every } i \geq 0.
\]