Computation Histories

Robert M. Keller
Harvey Mudd College
April 2010
What is this?

- A computation history (CH) is a recording of the history of a Turing-machine computation.
Of what use is it?

- Using CH’s we can demonstrate that various problems are undecidable.

- These problems would be difficult to show using, say, mapping reduction.
State of a Turing Machine

- The total **state** (often called a “configuration” to distinguish it from the control state) represents everything that needs to be known about the machine to continue the computation.
Capturing States as Strings

- We have seen this before:
- A state can be represented as a string \(xqy \in \Gamma^* \)
 where
 - \(\Gamma \) is the tape alphabet
 - \(x \) is the tape to the left of the head
 - \(q \) is the control state
 - \(y \) is the tape under and to the right of the head
Computation History

- As the TM computes, the states make transitions:
 \[x_1q_1y_1 \Rightarrow x_2q_2y_2 \Rightarrow x_3q_3y_3 \Rightarrow \ldots \]
- A deterministic machine will eventually either:
 - **Halt**: Reach a state \(xq_hy \) where no further transition is defined, or
 - **Diverge**: Never reach such a state, which means it goes on forever.
Encoding An Entire History

- **In the halting case**, the entire history is encodable as a **single string**:

 \[x_1q_1y_1 \Rightarrow x_2q_2y_2 \Rightarrow x_3q_3y_3 \Rightarrow \ldots \Rightarrow x_hq_hy_h \]

 where we consider \(\Rightarrow \) to be a symbol in a larger alphabet.

- Usually \(\# \) is used in place of \(\Rightarrow \), maybe because it’s easier to type.
Checking a History with a TM

- There is a Turing machine C (checker) that, with input \(<M, h>\), where \(<M>\) is an encoding of an arbitrary TM, can check whether \(h\) is a history of M.

- All C needs to do is see if the symbols around the head of each state change correspond to the transition table of M.

- Furthermore, C can check whether \(h\) is a halting (or an accepting) history by looking at the last control state.
Checking a History with a TM

\[x_1 a_1 q_1 b_1 y_1 \Rightarrow x_2 a_2 q_2 b_2 y_2 \Rightarrow x_3 a_3 q_3 b_3 y_3 \Rightarrow \ldots \]
where each \(a_i, b_i \in \Gamma \)

Do the local transitions \(a_i q_i b_i \rightarrow a_{i+1} q_{i+1} b_{i+1} \) correspond to the rules in the description?

Do the other parts of the string match?

A TM can check these things.
LBAs

- In fact, the CH can be checked for validity by a less-than-general TM called an LBA.

- LBA = “Linear Bounded Automaton”, a TM that can never exceed the amount of tape on which the input is written.

- An LBA can have a tape alphabet that is bigger than the input alphabet, so it can effectively “mark” tape cells, etc. It just can’t grow its tape.
LBA vs. DFA

- At first glance, it might appear that an LBA is no more powerful than a DFA, since it cannot add new states.

- The difference is, however, that an LBA’s total state set is a (linear) function of the input string size, which is not true for a DFA.
An Aside: 2-way DFAs

- If the LBA never writes on its tape, then it becomes a 2-way DFA.

- In this case, the power is reduced to that of a DFA: 2-way DFA’s only accept regular languages.

- The proof of this is non-trivial, and surprising. It involves the Myhill-Nerode theorem.
LBA for CH checking

- It is easy to see that an LBA can check a CH for correctness.

- It is also easy to see that no DFA could do this. It would require “matching” arbitrarily-long sub-strings. The Myhill-Nerode theorem or the pumping lemma could be used to prove this.
A_{LBA} is the Acceptance Language for LBAs

- Define $A_{LBA} =$

 \{<M, w> \mid M \text{ is an LBA} \land M \text{ accepts } w\}$
Theorem: A_{LBA} is decidable.

- Proof: Given an LBA encoding with tape $<M, w>$, we can simulate M on w.
- The maximum number of distinct tape states is $n^{|w|}$, where n is tape alphabet size and $|w|$ means the length of w.
- The number of different head positions is $1 + |w|$.
- The number of control states is m, say.
- So the total number of different states of M for an input w is $mn^{|w|}(1 + |w|)$.

(continued)
Proof that A_{LBA} is decidable (cont’d)

• For each step in the simulation of M on w, we increment the count, having started at 0.

• If M on w is still computing after $mn^{|w|(1+|w|)}$ steps, we know that it is in a loop. So the simulating machine can **reject** $<M, w>$ if this happens.

• The simulating machine will otherwise accept or reject $<M, w>$, depending on what happens with M on w.

• Hence there is a TM that can decide A_{LBA}.
Theorem: \(E_{LBA} \) is undecidiable.

- Define the Emptiness Language \(E_{LBA} = \{ <M> \mid M \text{ is an LBA} \land L(M) = \emptyset \} \)

Proof: We show \(A_{TM} \leq_m E_{LBA}^c \).

Define \(f(<M, w>) = M' \), where \(M' \) is an LBA that accepts the accepting computation histories for \(M(w) \). Then \(L(M') \neq \emptyset \) iff \(<M, w> \in A_{TM} \).
ALL\textsubscript{CFG} is undecidable

- Define $\text{ALL}_{\text{CFG}} = \{<G> \mid G \text{ is a CFG} \land L(G) = \Sigma^*\}$

We know that for every CFG, there is a corresponding PDA that accepts the same language.

We show that PDA’s can also, in a sense, check computation histories.

The halting computation of a TM will be identified with the \textit{absence} of a string accepted by the PDA.
Proof of \(\text{ALL}_{\text{CFG}} \) is undecidable

- For any TM and input \(<M, w>\) we construct a PDA that accepts all strings that are not valid computation histories.

- Thus, if the PDA accepts all strings, then \(M \) does not halt on \(w \).
Proof of ALL_{CFG} is undecidable

- We represent the computation histories slightly differently in this case: Every other state is reversed.

- Originally: $x_1a_1q_1b_1y_1 \Rightarrow x_2a_2q_2b_2y_2 \Rightarrow x_3a_3q_3b_3y_3 \Rightarrow \ldots$

- Now $\overline{x_1a_1q_1b_1y_1} \neq \overline{x_2a_2q_2b_2y_2} \neq \overline{x_3a_3q_3b_3y_3} \neq \ldots$

- where overbar represents the reversal of the string below.
Why reverse?

- Reversing every other state enables two successive states to be checked by a PDA.
- The PDA, given an input, checks one of these (non-deterministically):
 - Does the input *not* begin with the initial state of \(<M, w>\)? If not, **accept**.
 - Does the input *not* end with an accepting state of \(<M, w>\)? If not, **accept**.
 - Starting at any one of the sections \(C_i \# C_{i+1}\) or \(C_i \# C_{i+1}\), do the two sections *not* represent consecutive states. If not, **accept**.

 - So a string is **accepted** iff it does *not* represent a valid computation history.
 - Thus the PDA **accepts** \(\Sigma^*\) iff \(M(w)\) does not have an accepting computation history.
Corollary: EQ_{CFG} is undecidable

- Define $\text{EQ}_{\text{CFG}} =$

 \[
 \{<G, H> \mid G \text{ and } H \text{ are CFG’s } \land L(G) = L(H)\}
 \]

Proof: Show $\text{ALL}_{\text{CFG}} \leq_m \text{EQ}_{\text{CFG}}$.