Languages and Regular Expressions

Robert M. Keller
Harvey Mudd College
March 2010
Definition of the Concept “Language”

- A **language** over an alphabet Σ is any **subset** of Σ^*.

- The empty set \emptyset and Σ^* itself are both languages.

- Give some other precise examples of languages.
Operations on Languages

- Since languages are sets, we can define their **union, intersection**, etc. just as with any sets, e.g.

- Let L and M be two languages.

$$L \cup M = \{x \mid x \in L \text{ or } x \in M\}$$
$$L \cap M = \{x \mid x \in L \text{ and } x \in M\}$$
$$L - M = \{x \mid x \in L \text{ and } x \notin M\}$$
Product of Languages

- Let L and M be two languages. Define

$$LM = \{xy \mid x \in L, y \in M\}$$

called the “product” or
(loosely) the “concatention” of languages.

- Give examples.

- What if either is \emptyset?
Power Operator for Languages

- \(L \) be a language. Define the "\(n^{th} \) power" of \(L \) inductively:

\[
L^0 = \{\varepsilon\}
\]

\[
L^{n+1} = L \cdot L^n
\]

- Examples?
Plus and Star Operators for Languages

- Let \(L \) be a language. Define
 \[
 L^* = L^0 \cup L^1 \cup L^2 \cup ...
 \]

- Define
 \[
 L^+ = L^1 \cup L^2 \cup L^3 \cup ...
 \]

- Thus
 \[
 L^* = \{\varepsilon\} \cup L^+
 \]

- Give examples.
Language Identities: Devise RHS’s

- \(L\emptyset = \)
- \(L\{\varepsilon\} = \)
- \((LM)N = \)
- \(LL^* = \)
- \(LL^+ = \)
- \(\{\varepsilon\}^* = \)
- \(\{\varepsilon\}^+ = \)
- \(\emptyset^* = \)
- \(\emptyset^+ = \)
- \((L \cup M)N = \)
- \((L \cup M^*)^* = \)
Solving a Language Equation: Arden’s Rule

- This will be seen to be a useful device shortly:

- The equation $L = AL \cup B$ with A and B being languages and L an unknown has as a solution for L:

$$L = A*B$$

- Justify by substitution for L in the equation.

- This is the *smallest* solution.

- When is the solution unique?
Uniqueness in Arden’s Rule

- Uniqueness holds if A does not contain ε.

- If A contains ε, then A^*C is a solution for any $C \supseteq B$.
Regular Operators and Languages

- Union, Star, and Product (Concatenation) are called the **Regular Operators** on Languages.

- **Definition**: A language is *regular* if it can be formed from languages that are finite, using a finite number of regular operators.

- Note: * counts as only one operator, despite it being defined as an infinite union.

- Examples of Regular Languages?
True or False?

- Any language of exactly one element is regular.
- Any finite language is regular.
- $\Sigma^* - L$, where L is finite, is regular.
- Every language is regular. To see this, let $L = \{x_1, x_2, x_3, \ldots\}$.

Then $L = \{x_1\} \cup \{x_2\} \cup \{x\}_3 \cup \ldots$, which is clearly regular.
Regular Expressions
(cf. Sipser, section 1.3)

• A regular expression is a **shorthand** way of representing regular languages using regular operator symbols in conjunction with the following symbols.

• Each letter σ in Σ stands for the language with just one string of one letter, that letter.

• ε stands for the language $\{\varepsilon\}$.

• \emptyset stands for the empty language \emptyset.

• Example: If $\Sigma = \{0, 1\}$, then 0 stands for the language with just one string, that string having one letter, 0.
Examples of Regular Expressions

- \(0 \cup 1\)
- \((0 \cup 1)^*\)
- \((0 \cup 1)0^*1^*\)
- \(((0 \cup 1)0^*1)^*\)
- \((((\varepsilon \cup 1)0^*1)^*\)
- \(0^*110^* \cup 1^*001^*\)
Regular Expression Notation Notes

- Instead of ∪, some sources use infix + or | in regular expressions.

- * binds the tightest, then concatenation, then ∪.

- ∩ is not a regular operator, nor is -. However, we can show that these operators still preserve regularity.
Regular Expressions as Patterns

- Any language can be equated to a “pattern”, namely the pattern that matches all strings in the language.
- Examples:
 - 0^* is the pattern that matches strings containing only 0’s
 - 0^*10^* is the pattern that matches strings in $\{0, 1\}^*$ containing exactly one 1.
 - 0^*100^* is the pattern that ...
 - $0(0 \cup 1)^*1$
 - $((0 \cup 1)(0 \cup 1))^*$
 - $(0 \cup \varepsilon)(10)^*(1 \cup \varepsilon)$
- Note: To qualify as a pattern, the language of the expression must be that of exactly the set of strings matching the pattern, not a subset or superset.
Regular Expressions as Patterns

• Give regular expressions for the following patterns over \{0, 1\}:
 • Strings in which each 1 is followed by a 0.
 • Strings in which no 1 is followed by a 0.
 • Strings in which every 1 is preceded by and followed by a 0.
 • Strings in which the number of 1’s is divisible by 3.
 • Strings in which there is no run of 3 consecutive 1’s.
Application: Searchers

- Do `man egrep` on a UNIX system.

- How do such search algorithms work?