Languages and Regular Expressions

Robert M. Keller
Harvey Mudd College
March 2010

Definition of the Concept “Language”

- A **language** over an alphabet Σ is any **subset** of Σ^*.
- The empty set \emptyset and Σ^* itself are both languages.
- Give some other precise examples of languages.

Operations on Languages

- Since languages are sets, we can define their **union**, **intersection**, etc. just as with any sets, e.g.
- Let L and M be two languages.

 $L \cup M = \{x \mid x \in L \text{ or } x \in M\}$

 $L \cap M = \{x \mid x \in L \text{ and } x \in M\}$

 $L - M = \{x \mid x \in L \text{ and } x \notin M\}$

Product of Languages

- Let L and M be two languages. Define

 $LM = \{xy \mid x \in L, y \in M\}$

 called the "product" or (loosely) the "concatenation" of languages.
- Give examples.
- What if either is \emptyset?

Power Operator for Languages

- Let L be a language. Define the "nth power" of L inductively:

 $L^0 = \{\varepsilon\}$

 $L^{n+1} = L \cdot L^n$
- Examples?

Plus and Star Operators for Languages

- Let L be a language. Define

 $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots$
- Define

 $L^+ = L^1 \cup L^2 \cup L^3 \cup \ldots$
- Thus

 $L^* = \{\varepsilon\} \cup L^+$
- Give examples.
Language Identities: Devise RHS’s

• \(L \emptyset = \emptyset \)
• \(L \{ \epsilon \} = \{ \epsilon \} \)
• \((LM)N = L(MN) \)
• \(L^* = L \emptyset^* \)
• \(\{ \epsilon \}^* = \emptyset \)
• \(\epsilon^* = \emptyset \)
• \((L \cup M)N = (LM)N \)
• \((L \cup M)^* = (LM)^* \)

Solving a Language Equation: Arden’s Rule

• This will be seen to be a useful device shortly:
• The equation \(L = AL \cup B \) with \(A \) and \(B \) being languages and \(L \) an unknown has as a solution for \(L \):

\[
L = A^*B
\]
• Justify by substitution for \(L \) in the equation.
• This is the smallest solution.
• When is the solution unique?

Uniqueness in Arden’s Rule

- Uniqueness holds if \(A \) does not contain \(\epsilon \).
- If \(A \) contains \(\epsilon \), then \(A^*C \) is a solution for any \(C \supseteq B \).

Regular Operators and Languages

- Union, Star, and Product (Concatenation) are called the Regular Operators on Languages.
- Definition: A language is regular if it can be formed from languages that are finite, using a finite number of regular operators.
- Note: \(^* \) counts as only one operator, despite it being defined as an infinite union.
- Examples of Regular Languages?

True or False?

- Any language of exactly one element is regular.
- Any finite language is regular.
- \(\Sigma^* - L \), where \(L \) is finite, is regular.
- Every language is regular. To see this, let \(L = \{ x_1, x_2, x_3, \ldots \} \).
 Then \(L = \{ x_1 \} \cup \{ x_2 \} \cup \{ x_3 \} \cup \ldots \), which is clearly regular.

Regular Expressions

(cf. Sipser, section 1.3)

- A regular expression is a shorthand way of representing regular languages using regular operator symbols in conjunction with the following symbols.
- Each letter \(\sigma \) in \(\Sigma \) stands for the language with just one string of one letter, that letter.
- \(\epsilon \) stands for the language \(\{ \epsilon \} \).
- \(\emptyset \) stands for the empty language \(\emptyset \).
- Example: If \(\Sigma = \{ 0, 1 \} \), then \(0 \) stands for the language with just one string, that string having one letter, \(0 \).
Examples of Regular Expressions

- \(0 \cup 1\)
- \((0 \cup 1)\)*
- \((0 \cup 1)0^*1^*\)
- \(((0 \cup 1)0^*1^*)^*\)
- \(((\varepsilon \cup 1)0^*1^*)^*\)
- \(0^*110^* \cup 1^*001^*\)

Regular Expression Notation Notes

- Instead of \(\cup\), some sources use infix + or | in regular expressions.
- \(^*\) binds the tightest, then concatenation, then \(\cup\).
- \(\cap\) is not a regular operator, nor is -. However, we can show that these operators still preserve regularity.

Regular Expressions as Patterns

- Any language can be equated to a "pattern", namely the pattern that matches all strings in the language.
- Examples:
 - \(0^*\) is the pattern that matches strings containing only 0's
 - \(0^*10^*\) is the pattern that matches strings in \((0, 1)^*\) containing exactly one 1.
 - \(0^*10^*\) is the pattern that ...
 - \(0(0 \cup 1)^*1\)
 - \(((0 \cup 1)(0 \cup 1))^*\)
- Note: To qualify as a pattern, the language of the expression must be that of \textbf{exactly} the set of strings matching the pattern, not a subset or superset.

Regular Expressions as Patterns

- Give regular expressions for the following patterns over \(\{0, 1\}\):
 - Strings in which each 1 is followed by a 0.
 - Strings in which no 1 is followed by a 0.
 - Strings in which every 1 is preceded by and followed by a 0.
 - Strings in which the number of 1's is divisible by 3.
 - Strings in which there is no run of 3 consecutive 1's.

Application: Searchers

- Do `man egrep` on a UNIX system.
- How do such search algorithms work?