Machines and Languages

Robert Keller
March 2010

Machines
- By a machine over an alphabet Σ, we mean
 - a collection of states Q
 - a transition relation $\rightarrow \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$
 - an initial state $q_0 \in Q$
 - and a set of accepting states $F \subseteq Q$.

Behavior of a Machine
- A machine starts in state q_0.
- From a current state q it can change state to q' with input σ provided that $q - \sigma \rightarrow q'$.
- From a current state q it can change state to q' spontaneously provided that $q - \varepsilon \rightarrow q'$.
- The machine accepts a string $x \in \Sigma^*$ provided there is some path from q_0 to some $q \in F$ that spells out x.

Example of a Machine
- Accepted: 0 0 1 0 0 1
- Not accepted: 1 0 1 0

Another Example of a Machine
- Accepted: 1^p where p is prime
- Not accepted: 1^q where q is composite

Languages for Machines
- If M is a machine, then $L(M)$ is the language accepted by M, defined as the set of finite strings spelled out by all paths from the initial state to some accepting state.
The Language of a Machine State

- If \(q \) is a state, then the language \(L_q \) is defined to be the set of strings spelled out in going from \(q \) to some accepting state.
- Hence the language for the initial state is the language for the machine.

Equivalence of States

- Two states are defined to be equivalent
 \[q = q' \]
 iff their languages are equal:
 \[L_q = L_{q'} \]

Equivalence Relations Review

- \(\equiv \) is an equivalence relation, meaning:
 - \(\forall q \in Q \ (q \equiv q) \) [We drop the \(\in \) for brevity below.]
 - \(\forall q \forall q' (q \equiv q' \rightarrow q' = q) \)
 - \(\forall q \forall q' \forall q'' \ ((q = q' \land q' = q'') \rightarrow q = q'') \)

Partitions

- Every equivalence relation determines a partition on \(Q \).
- A partition is a set of subsets of \(Q \) such that:
 - No two subsets intersect.
 - The union of the subsets is all of \(Q \).
- The partition determined by \(\equiv \) is given by
 \[\{ \{ q' \mid q' = q \} \mid q \in Q \} \]
- The elements of the partition, sets of the form \(\{ q' \mid q' = q \} \) are called the equivalence classes of \(\equiv \).

Partition Determines Relation

- Every partition determines an equivalence relation:
 - If \(P \) is a partition, then define: \(q' \equiv q \) iff \(\exists S \in P \) (\(q \in S \) and \(q' \in S \)).
- Verify that the 3 equivalence relation properties hold.

Rank of a Partition

- The rank of a partition is just the number of equivalence classes.
- If the state set is finite, the rank of the corresponding equivalence partition is also finite.
- If the state set is infinite, the rank could still be finite.
Machines for Languages

- A language $L \subseteq \Sigma^*$ can be viewed as a machine:
 - The states are elements of Σ^*.
 - The initial state is ε.
 - The transitions are $x \sigma \rightarrow x\sigma$.
 - The accepting states are the elements of L.
- As with any machine, there are languages L_x for each x in Σ^*. Incidentally, $L_x = \{ z \mid xz \in L \}$

Equivalence of Strings modulo a Language

- With respect to a language L, two strings are equivalent $x \equiv_L y$ iff the languages of their corresponding states are equal:
 $$L_x = \{ z \mid xz \in L \} = \{ z \mid yz \in L \} = L_y$$

Congruence

- The relation \equiv_L has the additional property of being a congruence:
 - $x \equiv_L y$ implies $\forall z \in \Sigma^* (xz \equiv_L yz)$.
- By induction, a necessary and sufficient condition for \equiv_L to be a congruence is:
 - $x \equiv_L y$ implies $\forall \sigma \in \Sigma (xz \equiv_L yz)$.

Finite-State Machines (FSMs)

- A machine is finite-state iff its state set is finite.

Determinism

- A machine is deterministic iff:
 - There are no spontaneous state changes, and
 - For each $q, q', q'' \in Q$ and $\sigma \in \Sigma$:
 - if $q \sigma \rightarrow q'$ and $q \sigma \rightarrow q''$, then $q' = q''$.
 - In other words, there is a partial function $\delta : Q \times \Sigma \rightarrow Q$ such that $q \sigma \rightarrow q'$ iff $\delta(q, \sigma) = q'$.
 - "Partial" means that $\delta(q, \sigma)$ could be undefined for some pairs (q, σ).

DFA

- A finite-state machine that is also deterministic is called a DFA (for deterministic finite-state acceptor).

Finite-State Languages

- Say a language L is finite-state iff it is accepted by some DFA.
- The equivalence partition for a finite-state language is guaranteed to be finite rank.
- Conversely, if the equivalence partition for a language is finite rank, then there is a DFA that accepts that language.

Language in terms of Equivalence Classes

- Consider a finite-state language.
- Its equivalence partition must be finite-rank.
- The language itself must be the union of some of the equivalence classes.

- e.g. \(V \cup Y \) could be the language

Myhill-Nerode Theorem

- \(L \subseteq \Sigma^* \) is a finite-state language iff
- \(L \) is the union of some equivalence classes of some congruence relation on of finite rank.

Proof of Myhill-Nerode

- Suppose \(L \) is a finite-state language.
- Let \(M \) be a DFA accepting \(L \).
- Let \(M \) be the a DFA.
- Let \(\delta \) be the state-transition function described earlier, i.e. \(\delta(q, \sigma) = q' \) means there is a transition from \(q \) to \(q' \) via letter \(\sigma \).
- Extend \(\delta \colon Q \times \Sigma \to Q \) to \(\delta^* \colon Q \times \Sigma^* \to Q \), as follows:
 - \(\forall q \in Q \forall x \in \Sigma^* \forall \sigma \in \Sigma \quad \delta^*(q, x) = \delta^*(\delta(q, \sigma), x) \)
- Claim: \(x \equiv_L y \iff \delta^*(q_0, x) = \delta^*(q_0, y) \).

Lemma

- \(\forall z \in \Sigma^* \forall x \in \Sigma^* \forall q \in Q \delta^*(q, xz) = \delta^*(\delta^*(q, x), z) \)
- Proof is by induction on \(x \).
- Basis \(x = \varepsilon \): \(\delta^*(q, \varepsilon) = q \) and \(xz = z \), so
 - \(\delta^*(q, xz) = \delta^*(q, z) = \delta^*(\delta^*(q, \varepsilon), z) \)
Lemma

- Induction step:
 Assume \(\forall q \in Q \delta^*(q, xz) = \delta^*(\delta^*(q, x), z) \).
 Show \(\forall q \in Q \forall \sigma \in \Sigma \delta^*(q, (\sigma x)z) = \delta^*(\delta^*(q, \sigma x), z) \).

But \(\delta^*(q, (\sigma x)z) = \delta^*(q, \sigma x(z)) \) (associativity of concat.)
\(= \delta^*(\delta^*(q, \sigma), x) \) (definition of \(\delta^* \))
\(= \delta^*(\delta^*(q, \sigma), x, z) \) (induction hypothesis)
\(= \delta^*(\delta^*(q, \sigma x), z) \) (definition of \(\delta^* \)).

Proof of Claim

- \(x \equiv_L y \) iff (by definition of \(\equiv_L \)) \(L_x = L_y \).
- \(\forall z \in \Sigma^* (x z \in L \Leftrightarrow y z \in L) \) iff
- \(\forall z \in \Sigma^* (\delta^*(q_0, xz) \in F \equiv \delta^*(q_0, yz) \in F) \), where \(F \) is the set of accepting states of \(M \).
- \(\forall z \in \Sigma^* (\delta^*(\delta^*(q_0, x), z) \in F \iff \delta^*(\delta^*(q_0, y), z) \in F) \).

Claim: If \(\equiv_L \) has finite-rank, then there is a DFA accepting \(L \).

- The DFA \(M \) is simply constructed as follows:
 - The states of \(M \) are the equivalence classes of \(\equiv_L \).
 - Let \([x]\) denote the equivalence class of \(x \in \Sigma^* \).
 - The initial state of \(M \) is \([\epsilon]\).
 - The accepting states are \([x]\) for \(x \in L \).
 - The transitions are defined by the function:
 \(\forall x \in \Sigma^* \forall \sigma \in \Sigma \ a([x], \sigma) = [x\sigma] \).
 - \(a \) is well defined because \(\equiv_L \) is a congruence relation.

Impact of Claim

- The claim shows that two strings are equivalent iff the states to which the machine is taken when reading those states are also equivalent.
- But the set of states is finite, so the set of equivalence classes, i.e. the partition, must be finite as well.
- Hence the partition on \(\Sigma^* \) is also finite, it being in one-one correspondence with the partition on states.

Automata

- Colloquially, an automaton (plural "automata") is an autonomous device (such as a robot or wind-up toy).
- In CS, the term has a more specific meaning: that of an abstract mathematical machine that can perform a specific function.
Uses of Automata

- There are many uses, one of which is to specify algorithms for accepting languages.
- An automaton accepts a language if it can tell, for any given input string, whether or not the string is in the language.

Example: Compilers, etc.

- Every compiler contains an automaton, that tells whether or not the input string is well-formed, i.e. is in the language that it compiles.
- Every pattern search program is effectively an automaton for recognizing patterns.

Finite-State Automata (FSA or DFA, they are the same)

- An automaton is finite-state if its behavior is representable by transitions between a states in a finite set, some of which are designated accepting and others not.
- Each automaton has a designated start state.

Examples of FSA

- An FSA capable of accepting exactly the strings ending with 1.

Examples of FSA

- An FSA capable of accepting exactly the strings containing no two consecutive 1’s.

Thing to Check

- For each combination of a state and a symbol, there should be exactly one arrow leaving the state with that symbol.
- This is the “deterministic” (“D”) in DFA.
- If this property does not hold, better fix it; your automaton might be wrong.
Application

- One way to implement a search is to construct, perhaps on the fly, an automaton that accepts the corresponding language, then simulate the automaton on the given input.

Two Ways to Define Specific Languages

- Give an FSA that accepts the language.
- Give a regular expression for the language.

Remarkable Fact

- The preceding two ways are equivalent.

- Equivalent here means that the two methods define the same family of languages.

Application of this Theory

- Sometimes it’s easier to give an automaton for a language.
- Sometimes it’s easier to give a regular expression.
- It would be nice to be able to go from one to the other more-or-less freely.

Regular Expression from DFA

- Label the States

- Identify each state with the set of paths from the start state to it. This set is a language.
- The language accepted by the DFA is the union of the paths to each of the accepting states, in this case \(L \cup M \).

Deriving Closed Forms

- View the acceptor as a set of regular-expression equations:
 - \(L = L_0 \cup M_0 \cup \varepsilon \)
 - \(M = L_1 \)
 - \(N = M_1 \cup N(0 \cup 1) \)
- The \(\varepsilon \) is on the RHS of the starting state only.
- We want to solve (e.g. using Arden’s Rule) for \(L \) and \(M \), and take the union of the solutions.
Solving RE Equations

- **Solve** for L and M:
 - L = L0 ∪ M0 ∪ ε
 - M = L1
 - N = M1 ∪ N(0 ∪ 1)

- **Substitution Operation**:
 - A LHS variable can be replaced with its RHS, so replacing M in the L equation:
 - L = L0 ∪ L10 ∪ ε
 - Substitution again:
 - M = (0 ∪ 1)*1

- **Elimination Operation**:
 - An equation of the form L = LA ∪ B has the solution L = BA*, so:
 - L = ε(0 ∪ 10)*, or more simply L = (0 ∪ 10)*

- **Substitution again**:
 - M = L1
 - M = (0 ∪ 10)*1

Conclusion

- The language accepted by the DFA below is:
 - L ∪ M
 - which is (0 ∪ 10)* ∪ (0 ∪ 10)*1
 - or more simply
 - (0 ∪ 10)*)ε ∪ 1

DFA ⇒ RE Algorithm

- Express the FSA as a set of RE equations
 - Each state is a variable.
 - Each variable is equated to a union of expressions showing how to get to that state in one step from other states.
 - The start state has ε on the RHS as well.

- Solve the RE equations for the variables:
 - The variables, along with their equations, are solved for one at a time.
 - Choose a variable for elimination.
 - Express that variable in terms of the remaining variables only, using the * operator (L = LA ∪ B has the solution L = BA*).
 - Substitute the solution for all occurrences of the variable in the remaining equations.
 - Repeat the above steps until no variables remain.

- Work backward, substituting the solutions found for other variables, until each variable is expressed in closed form.

Another Example

- **Solve**:
 - L = L1 ∪ M0 ∪ N0 ∪ ε
 - M = L0 ∪ M1 ∪ N1
 - N = L1 ∪ M1 ∪ N0

 - Note that these equations don’t really correspond to a deterministic machine, but it doesn’t matter.

 - Eliminate N, using N = (L1 ∪ M1)*0
 - L = L0 ∪ M1 ∪ (L1 ∪ M1)*0
 - M = L0 ∪ M1 ∪ (L1 ∪ M1)*1

- Regroup:
 - L = L(0 ∪ 10*) ∪ M(0 ∪ 10*) ∪ ε
 - M = L(0 ∪ 10*) ∪ M(0 ∪ 10*) ∪ ε

Solution, continued

- Solving:
 - L = L(0 ∪ 10*) ∪ M(0 ∪ 10*) ∪ ε
 - M = L(0 ∪ 10*) ∪ M(1 ∪ 10*)

- Eliminate M using M = L(0 ∪ 10*) ∪ (1 ∪ 10*1), giving:
 - L = L(0 ∪ 10*) ∪ L(0 ∪ 10*) ∪ (1 ∪ 10*1)(0 ∪ 10*) ∪ ε

- Regrouping:
 - L = (L(0 ∪ 10*) ∪ (1 ∪ 10*1)(0 ∪ 10*)) ∪ ε

- Solving:
 - L = (L(0 ∪ 10*) ∪ (1 ∪ 10*1)(0 ∪ 10*)) ∪ ε

- Working backward:
 - M = L(0 ∪ 10*) ∪ (1 ∪ 10*1)(0 ∪ 10*) ∪ ε
 - N = (L(0 ∪ 10*) ∪ (1 ∪ 10*))

Graphical Alternative Viewpoint

- The DFA is interpreted graphically as a set of regular-expression equations.

- After an initial setup, nodes are eliminated one at a time, replacing paths through them with regular expressions.

- At completion, there is one arc between a pair of nodes, labeled with the regular expression for the language of the DFA.
DFA → RE Example

Step 1: Add Isolated Start and End States

Ultimate goal

Elimination Step
- Pick a node for elimination (other than start and end).
- Union to the regular expression of each pair of nodes having a path through the chosen node an additional expression component representing those paths.

Elimination Step Illustrated

This has to be done for all pairs f, t including the case where $f = t$.
Summary so far

- The language accepted by an DFA is a regular language.
- We haven’t yet shown that the converse is true.