Resolution Theorem Proving, Part 3

Robert Keller
21 March 2005
The Need for “Factoring”

- The simple form of resolution (called “binary resolution”) used so far is not quite enough for full generality.

- Consider these clauses:
 - \(p(X) \lor p(Y) \)
 - \(\neg p(U) \lor \neg p(V) \)

- There are four ways to resolve these two clauses (e.g. \(\{X \leftarrow U\} \)). However, no resolvent introduces anything new. In order to make progress, we need to “factor” the clauses.
Factoring

• If there are two are more literals in the same clause that unify, then the result of reducing the clause after applying the mgu is called a factor of the clause.

• Example:
 • In clause p(X) ∨ p(Y), \{X←Y\} unifies the two literals.
 • The reduced form is p(Y), which is a factor of the original clause.
 • Evidently this clause could be replaced with its factor. However, this will not always be the case.
Factoring: Another Example

- In clause

\[p(X) \lor p(f(Y)) \lor p(f(g(Z))) \lor q(Y) \]

\{X ← f(g(Z)), Y ← g(Z)\} unifies the first three literals.

- The corresponding factor is:

\[p(f(g(Z))) \lor q(g(Z)) \]

- The factor is, however, less general, so we cannot replace the original clause with the factor.
General Resolution of Two Clauses

- Two clauses resolve if:
 - They have a binary resolvent (the simplest kind of resolution, without factoring).
 or
 - One clause and a factor of the other have a binary resolvent.
 or
 - There are factors of the two clauses that have a binary resolvent.

- Since a clause is trivially a factor of itself, we could get by with just the third statement above.
Full Resolution Example

- **Clauses:**
 - \(p(X, Y) \lor p(Y, X) \)
 - \(\neg p(U, V) \lor \neg p(V, U) \)

- **Factors:**
 - \(p(X, X) \)
 - \(\neg p(U, U) \)

- **Resolvent:**
 - \(\bot \)
Full Resolution Example

- **Clauses:**
 1. \(p(X, Y) \lor q(X, Y) \)
 2. \(p(U, V) \lor \neg q(U, g(W)) \)
 3. \(\neg p(f(R), S) \lor \neg p(f(S), g(T)) \)

- **Resolvents:**
 4. \(p(U, V) \lor p(U, g(W)) \) 1, 2 with \(\{X\leftarrow U, Y\leftarrow g(W)\} \)
 5. \(\bot \) 3, 4 with \(\{U\leftarrow f(g(T)), R\leftarrow g(T), S\leftarrow g(T), V\leftarrow g(T), W\leftarrow T\} \)
Subsumption

• A clause C **subsumes** a clause D if there is a substitution θ such that $C\theta \subseteq D$, where we interpret the clauses as **sets** of their literals.

• If a clause D in a set of clauses is subsumed by another clause C **within the set**, then we can delete D from the set without affecting the case of whether the empty clause \bot is derivable.
Subsumption Examples

• P(X) subsumes P(X) ∨ Q(Y) (by the empty substitution {}).

• ¬P(X) ∨ Q(f(X)) subsumes ¬P(Z) ∨ ¬P(h(Y)) ∨ Q(f(h(Y))) (by the substitution \{X ← h(Y), Z ← h(Y)\}).
Answer Extraction

- Resolution is not just for proving theorems anymore.

- Resolution can be used for extracting answers from a database, knowledge base, or reasoning system.
From Yes-No to Answer Terms

- Consider the clause set:
 - \(\neg \text{man}(X) \lor \text{mortal}(X) \)
 - \text{man}(\text{socrates})
 - \(\neg \text{mortal}(\text{socrates}) \)
- Obviously this set is unsatisfiable, and we can obtain a proof by resolution.
- But what if we drop the third clause. The first two clauses are satisfiable, and can be thought of as a “knowledge base”.
- We can ask a question of the knowledge base:

 Name someone who is mortal.
Asking Questions

- To find an individual for X that satisfies a criterion $p(...X...)$, add to the set of clauses the clause:

 $$\neg p(...X...) \lor \text{answer}(X)$$

- Then conduct resolution as before, but stop when there is a clause containing only answer literals.
Example: Who is mortal?

1. $\neg \text{man}(X) \lor \text{mortal}(X)$
2. $\text{man}(\text{socrates})$
3. $\neg \text{mortal}(Y) \lor \text{answer}(Y)$
4. $\text{mortal}(\text{socrates})$ resolution 1, 2
5. $\text{answer}(\text{socrates})$ resolution 2, 3
Example: Who is Caroline’s Grandfather?

1. ¬father(X, Y) ∨ parent(X, Y)
2. ¬father(X, Y) ∨ ¬parent(Y, Z) ∨ grandfather(X, Z)
3. father(joe, john)
4. father(john, caroline)
5. ¬grandfather(X, caroline) ∨ answer(X)
6. ¬father(X, Y) ∨ ¬parent(Y, caroline) ∨ answer(X) 2, 5
7. ¬father(X, Y) ∨ ¬father(Y, caroline) ∨ answer(X) 1, 6
8. ¬father(X, john) ∨ answer(X) 4, 7
9. answer(joe) 3, 8
Answer Extraction in Otter

- Normally Otter searches for the null clause and stops when and if it has produced it.

- If the special literal

 \$answer(X)

appears in a clause, Otter will stop when it finds a clause containing only literals containing \$answer.
Grandfather Example in Otter

\[-father(x, y) \mid parent(x, y).\]

\[-father(x, y) \mid -parent(y, z) \mid grandfather(x, z).\]

\[father(joe, john).\]

\[father(john, caroline).\]

\[-grandfather(x, caroline) \mid $answer(x).\]

1 [] \[-father(x,y)\mid parent(x,y).\]
2 [] \[-father(x,y)\mid -parent(y,z)\mid grandfather(x,z).\]
3 [] \[-grandfather(x,caroline)\mid $answer(x).\]
4 [] \[father(joe,john).\]
5 [] \[father(john,caroline).\]
7 [hyper,5,1] \[parent(john,caroline).\]
8 [hyper,7,2,4] \[grandfather(joe,caroline).\]
9 [binary,8.1,3.1] \[$answer(joe).\]
“Logic” Puzzles: Example

% Professors Dodds, Stone, and Thom go to their favorite bars for beer.
% Each prof prefers a different beer (one of Anchor, Bud, and Miller)
% and frequents a different bar (one of Alice's, Harry's, or Joe's).
% Each bar serves a unique beer.
%
% Professor Stone prefers Bud. (Clue 1)
%
% Professor Thom doesn't prefer Miller. (Clue 2)
%
% The prof who prefers Miller frequents Alice's bar. (Clue 3)
%
% The prof who prefers Anchor does not frequent Joe's. (Clue 4)
%
% Which bar does each prof frequent and what beer does each prefer?
Solving

- Determine clause form from clues.
- We will use Otter form, so that Otter can try to solve the puzzle.
- Note: This may look really simple, but it is not always easy to get right.
Define clauses for clues

- prefer(Stone, Bud).

- prefer(Thom, Miller).

- prefer(x, Miller) | frequent(x, Alice).

- prefer(x, Anchor) | -frequent(x, Joe).
Identity Individuals in Various Categories

- prof(Dodds).
 prof(Stone).
 prof(Thom).

- beer(Anchor).
 beer(Bud).
 beer(Miller).

- bar(Alice).
 bar(Harry).
 bar(Joe).
Distribution Requirements

• % Every bar is frequented by some prof.

 -bar(y) | frequent(Dodds, y) | frequent(Stone, y) | frequent(Thom, y).

• % Every beer is preferred by some prof.

 -beer(y) | prefer(Dodds, y) | prefer(Stone, y) | prefer(Thom, y).
Uniqueness Requirements

• % Each bar serves a unique beer.

 -serves(x, y) | -serves(x, z) | y = z.

• % Each prof prefers a unique beer.

 -prefer(x, y) | -prefer(x, z) | y = z.

• % Each prof frequents a unique bar.

 -frequent(x, y) | -frequent(x, z) | y = z.
Answer Clause

Which bars are frequented, and which beers preferred, by which professors?

- frequent(Dodds, x) | - frequent(Stone, y) | - frequent(Thom, z)
| - prefer(Dodds, u) | - prefer(Stone, v) | - prefer(Thom, w)
| $answer([Dodds, x, u], [Stone, y, v], [Thom, z, w])$.
Otter Solution

$answer([\text{Dodds,Alice,Miller}],\newline[\text{Stone,Joe,Bud}],\newline[\text{Thom,Herry,Anchor}])$.
What if Solution not Unique?

Try removing one or more clues.

Note that Otter will give a *disjunctive* solution.

\[
\text{\$answer([Dodds,Harry,Anchor],}
\text{ [Stone,Joe,Bud],}
\text{ [Thom,Alice,Miller])}
\text{ | \$answer([Dodds,Alice,Miller],}
\text{ [Stone,Joe,Bud],}
\text{ [Thom,Harry,Anchor]).}
\]
What if No Solution?

If there is no refutation, Otter will run out of clauses to create, or run forever.
Set of Support (sos) Strategy

- A typical clause set to be refuted will involve:
 - A set of clauses known, or thought to be mutually consistent (satisfiable), e.g. derived from axioms.
 - A single clause which is derived from the negation of the “theorem” to be proved.

- The sos strategy entails always picking one clause for resolution from the sos, and others from outside the sos.

- Resolvents are added to the sos.

- This is a complete strategy and is the one used by Otter.
Motion Puzzles and Games

- Moves in a motion puzzle or game can often be encoded as logic.

- Resolution can be used to find a solving or winning sequence of moves.
Example: Linear Peg Solitaire
Linear Peg Solitaire Explanation

• Pegs of two colors are shown in their home positions at the top.
• The objective is to completely reverse the pegs, so that each peg’s original home is occupied by a peg of the opposite color.
• Allowable actions:
 • Move: A peg can be moved toward the opposite side by moving into an adjacent empty hole.
 • Jump: A peg can jump toward the opposite side over a peg of the opposite color, provided that there is a hole to receive the jumping peg.
General Form of the Puzzle

- Versions of the puzzle exists for $2n$ pegs (n of each color) and $2n+1$ holes.

- Ideally, each version can be solved.
Peg Game Formulation

- Represent the **state** of the game with two terms.
- Say the pegs are **w** for white, **r** for red.
- Represents the pegs **away from the hole** in either direction as a composition of function symbols.
- The initial state shown is:
 \[s(w(w(w(w(c))))), r(r(r(r(c)))) \]
- The second state shown is:
 \[s(r(w(r(w(w(c)))))), w(r(r(c))) \]
- **c** is a dummy constant symbol
Formulating Moves

- Simple moves (non-jump):
 - \(\text{move}(s(w(X), Y), s(X, w(Y))) \) \hspace{1cm} (wm)
 - \(\text{move}(s(X, r(Y)), s(r(X), Y)) \) \hspace{1cm} (rm)

- Jump moves:
 - \(\text{move}(s(r(w(X)), Y), s(X, r(w(Y)))) \) \hspace{1cm} (wj)
 - \(\text{move}(s(X), w(r(Y))), s(w(r(X)), Y)) \) \hspace{1cm} (rj)
Formulating Reachability

- **Initial state:**
 \[\text{reachable}(w(w(w(w(c)))), r(r(r(r(c))))) \]

- **State change:**
 \[\neg \text{reachable}(X) \lor \neg \text{move}(X, Y) \lor \text{reachable}(Y) \]

- **Final state:**
 \[\neg \text{reachable}(r(r(r(r(c)))))), w(w(w(w(c)))))) \]
Otter Formulation

\[
\text{move}(s(w(x), y), s(x, w(y))). \\
\text{move}(s(x, r(y)), s(r(x), y)). \\
\text{move}(s(r(w(x)), y), s(x, r(w(y)))). \\
\text{move}(s(x, w(r(y))), s(w(r(x)), y)). \\
\text{reachable}(s(w(w(w(w(c)))), r(r(r(r(c)))))). \\
-\text{reachable}(x) \mid -\text{move}(x, y) \mid \text{reachable}(y). \\
-\text{reachable}(s(r(r(r(r(c)))), w(w(w(w(c)))))).
\]
Otter proof for 2 pegs of each color

1 [] \(-\text{reachable}(x) \lor \text{-move}(x,y) \lor \text{reachable}(y)\).
2 [] \(-\text{reachable}(s(r(r(c)),w(w(c))))\).
3 [] \text{move}(s(w(x),y),s(x,w(y))).
4 [] \text{move}(s(x,r(y)),s(r(x),y)).
5 [] \text{move}(s(r(w(x)),y),s(x,r(w(y)))).
6 [] \text{move}(s(x,w(r(y))),s(w(r(x)),y)).
7 [] \text{reachable}(s(w(w(c)),r(r(c)))).
10 [\text{hyper},4,1,7] \text{reachable}(s(r(w(w(c))),r(c))).
11 [\text{hyper},10,1,5] \text{reachable}(s(w(c),r(w(r(c))))).
14 [\text{hyper},11,1,3] \text{reachable}(s(c,w(r(w(r(c))))).
18 [\text{hyper},14,1,6] \text{reachable}(s(w(r(c)),w(r(c)))).
22 [\text{hyper},18,1,6] \text{reachable}(s(w(r(w(r(c)))),c)).
24 [\text{hyper},22,1,3] \text{reachable}(s(r(w(r(c))),w(c))).
26 [\text{hyper},24,1,5] \text{reachable}(s(r(c),r(w(w(c))))).
28 [\text{hyper},26,1,4] \text{reachable}(s(r(r(c)),w(w(c)))).
29 [\text{binary},28.1,2.1] \$F.$
Otter Proof for 3 pegs of each color

7 [] reachable(s(w(w(w(c)))),r(r(r(c))))).
8 [hyper,7,1,4] reachable(s(r(w(w(w(c)))),r(r(c))))).
12 [hyper,5,1,8] reachable(s(w(w(c)),r(w(r(r(c))))))).
16 [hyper,12,1,3] reachable(s(w(c),w(r(w(r(r(c))))))).
20 [hyper,16,1,6] reachable(s(w(r(w(c))),w(r(r(c))))).
27 [hyper,20,1,6] reachable(s(w(r(w(r(c)))),r(c))).
34 [hyper,27,1,4] reachable(s(r(w(r(w(r(c))))),c)).
39 [hyper,34,1,5] reachable(s(r(w(r(w(c)))),r(w(c))))).
44 [hyper,39,1,5] reachable(s(r(w(c)),r(w(r(w(c))))))).
51 [hyper,44,1,5] reachable(s(c,r(w(r(w(r(w(c))))))))).
57 [hyper,51,1,4] reachable(s(r(c),w(r(w(r(w(c))))))).
63 [hyper,57,1,6] reachable(s(w(r(r(c))),w(r(w(c))))).
69 [hyper,63,1,6] reachable(s(w(r(w(r(r(c))))),w(c))).
72 [hyper,69,1,3] reachable(s(r(w(r(r(c)))),w(w(c))))).
75 [hyper,72,1,5] reachable(s(r(r(c)),r(w(w(w(c))))))).
77 [hyper,75,1,4] reachable(s(r(r(r(c))),w(w(w(c))))).
78 [binary,77.1,2.1] $F.$
Pegs vs. Proof Length (# of Moves)

<table>
<thead>
<tr>
<th>Pegs of Each Color</th>
<th>Proof Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>n</td>
<td>$n^2 + 2n$</td>
</tr>
</tbody>
</table>
Determining the Move Sequence

- The previous proofs only showed that the puzzle could be solved for those variations.

- The actual move sequence would have to be dug out from the proof steps.

- We can modify the rules so that the move sequence is obtained as a **byproduct**.
Determining the Move Sequence

- Use function composition to represent accumulated move sequence.
- Revised rules (4-pegs, where specific):
 - move(s(w(x), y), s(x, w(y)), z, wm(z)).
 - move(s(x, r(y)), s(r(x), y), z, rm(z)).
 - move(s(r(w(x)), y), s(x, r(w(y))), z, wj(z)).
 - move(s(x, w(r(y))), s(w(r(x)), y), z, rj(z)).
 - reachable(s(w(w(w(w(c)))), r(r(r(r(c))))), d).
 - -reachable(x, z) | -move(x, y, z, zz) | reachable(y, zz).
 - -reachable(s(r(r(r(r(c)))), w(w(w(w(c))))), z) | $answer(z).
The Move Sequence is Read Inside-Out:

- For 4 pegs of each color:
 \[\text{answer} = \text{rm}(\text{wj}(\text{wm}(\text{rj}(\text{rm}(\text{wj}(\text{wj}(\text{wm}(\text{rj}(\text{rj}(\text{rm}(\text{wj}(\text{wj}(\text{wj}(\text{rm}(\text{wj}(\text{wj}(\text{rm}(\text{d}))))))))))))))))))))]]

- The sequence is:
 \[
 \text{rm } \text{wj } \text{wm } \text{rj } \text{rj } \text{rm } \text{wj } \text{wj } \text{wj } \text{wm } \text{rj } \text{rj } \\
 \text{rj } \text{rj } \text{wm } \text{wj } \text{wj } \text{rm } \text{rj } \text{rj } \text{wm } \text{wj } \text{rm }
 \]

- (For this puzzle, the move sequence is coincidentally a palindrome.)
Other Notes on Otter

- Otter can preprocess formulas into clauses for you:
 - Quantifiers as input
 - Automatic prenexing and skolemization

- Otter can automatically determine an sos.
Example from the Mid-Term

- Given:
 - $\forall x \exists y \ R(x, y)$
 - $\forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z))$
 - $\forall x \forall y (R(x, y) \rightarrow R(y, x))$

To derive:
- $\forall x \ R(x, x)$
Otter Input

formula_list(usable). % use formula_list rather than list

all x (exists y r(x, y)).

all x all y all z ((r(x, y) & r(y, z)) -> r(x, z)).

all x all y (r(x, y) -> r(y, x)).

-(all x r(x, x)).

dend_of_list.
Result of Pre-Processing by Otter

\[r(x, \$f1(x)). \quad \text{\%Auto-identified as sos by Otter} \]
\[-r(x, y) \lor -r(y, z) \rightarrow r(x, z). \]
\[-r(x, y) \lor r(y, x). \]
\[-r(\$c1, \$c1). \]

Note that \$ is Otter’s way of specifying generated Skolem functions and constants.

The original list was:

\[\text{all } x \ (\exists y \ r(x, y)). \]
\[\text{all } x \text{ all } y \text{ all } z \ ((r(x, y) \land r(y, z)) \rightarrow r(x, z)). \]
\[\text{all } x \text{ all } y \ (r(x, y) \rightarrow r(y, x)). \]
\[-(\text{all } x \ r(x, x)). \]
Otter’s Proof of the Midterm Problem

1 [] \(-r(x,y)\) | \(-r(y,z)\) | \(r(x,z)\).
2 [] \(-r(x,y)\) | \(r(y,x)\).
3 [] \(-r($c1,$c1)\).
4 [] \(r(x,$f1(x))\).
5 [hyper,4,2] \(r($f1(x),x)\).
8 [hyper,5,1,4] \(r(x,x)\).
9 [binary,8.1,3.1] $F.$
Otter Proof Rules and Nomenclature

- binary: means binary resolution
- factoring: is indicated when used
- hyper: means hyper-resolution: resolving multiple clauses in one step.
- paramodulation: a rule for handling equality
- demodulation: use of user-specified equalities
- Knuth-Bendix: a system for pre-processing equality rules
Otter is Not Prolog

- The syntax is different, although Otter has a “Prolog variables” mode.
- Otter has genuine negation.
- Prolog only has “negation as failure”.
- Prolog relies on the “closed world assumption”.