Parsing and Interpretation

September 22, 2011

CS 42: Principles and Practice of Computer Science
Yes/No Recursive Descent in the Abstract

For each nonterminal in your grammar

\[A \rightarrow X ; Y ! | T D \& H | B \]

there is a function whose form follows the grammar:

```plaintext
match-A():
    if ( ??? ):
        match-X()
        check-for-and-consume ( ; )
        match-Y()
        check-for-and-consume ( ! )
    else if ( ??? ):
        match-T()
        match-D()
        check-for-and-consume ( \& )
        match-H()
    else if ( ??? ):
        consume B()
    else
        parse error
```

where the tests ??? are efficient.
Making Efficient Decisions

If our grammar has the rule

\[B \rightarrow a \ W \ W \mid b \ Y \]

then what should our tests be?

```plaintext
match-B:
    if ( ??? ):
        consume ( a )
        match-W()
        match-W()
    else if ( ??? ):
        consume ( b )
        match-Y()
    else
        abort "Parse error"
```
Making Decisions

If our grammar has the rules

\[
\begin{align*}
B & \rightarrow W \ W \mid Y \\
W & \rightarrow e \ W \mid f \\
Y & \rightarrow g \ Y \mid h
\end{align*}
\]

then what should our tests be?

```python
match-B:
    if ( ??? ):
        match-W()
        match-W()
    else if ( ??? ):
        match-Y()
    else
        report "Parse error"
```
Subtleties: Delaying Decisions ("Left Factoring")

If two choices start the same way, it's hard to make an immediate decision. Solution: delay the decision!

```plaintext
;; S -> P + S | P

match-S():
  if ( ??? ) :
    match-P()
    check-for-and-consume ( + )
    match-S()
  else:
    match-P()

;; S -> P + S | P

match-S():
  match-P()
  if ( ??? ) :
    consume ( + )
    match-S()
```
Subtleties: Building Trees

Each function rather than succeeding or failing, returns abstract syntax.

;;; S -> P + S | P

parse-S():
 p = parse-P()

 if (???):
 consume (+)
 s = parse-S()
 return <addition tree with p and s as subtrees>

 else:
 return p
Subtleties: Consuming Input Functionally

Each function takes a list of tokens, uses some of them to construct the AST, and returns any leftover tokens.

;;; S -> P + S | P

parse-S(tokens):
 p, after-p = parse-P(tokens)

 if (???):
 check that after-p starts with +
 s, after-s = parse-S((rest after-p))
 return <addition tree with p and s as subtrees>,
 after-s

 else:
 return p, after-p
Subtleties: Racket

```scheme
;; S -> P + S | P
;; Input: a list of tokens
;; Output: the ast, and the list of leftover tokens.
(define (parse-s tokens)
  (let* ([(pair (parse-p tokens))]
         [(p (first pair))]
         [(after-p (second pair))]
         (if (equal? (first after-p) #\+)
             (let* ([(pair2 (parse-s (rest after-p)))]
                    [(s (first pair2))]
                    [(after-s (second pair2))]
                    [(ast (list 'add p s)])
                    (list ast after-s))
             (list p after-p)))))
```
Grammar for the Homework

T -> def V L | L
L -> # E | E
E -> P + E | P - E | P
P -> K * P | K / P | K
K -> U ^ I | U
U -> (L) | - U | Q
Q -> D ~ D V* | D V* | V V*
 where V* means 0 or more V's

I -> <any integer> | - <any integer>
D -> any *positive* number
V -> any variable name (a string token)

How do we know whether the top-level input is a definition or not?
How do we make the right decision for parse-u?
Recursive Descent Weaknesses

It's sometimes impossible to make an efficient decision. The most common cause is “Left Recursion.”

```
;; S -> S + P | P

parse-S():
  if ( ??? ):
    s = parse-S()
    consume ( + )
    p = parse-P()
    return <addition tree with s and p as subtrees>
  else:
    p = parse-P()
    return p
```
Handling Left Recursion

Most common solution:

\[S \rightarrow P \mid P + P \mid P + P + P \mid \ldots \]

Use a looping function that gathers as many + P’s as it can. Turn this list into a left-associative tree.
AN EVALUATOR FOR ADDITIONS

Recursive Tree Traversal!

;; e.g., (eval '(add (add 3 4) 5)) ===> 12

(define (eval T)
 (cond
 [(number? T) T]
 [(equal (first T) 'add)
 (+ (eval (second T)) (eval (third T)))]
 [else
 (error "bad input")])

What if we wanted to allow additions and subtractions?
VARIABLES?

What about '(add (add x y) 5))?
VARIABLES?

What about `'(add (add x y) 5))`?
Solution: an environment (lookup table) that associates variables with their values.

```
(define (eval env T)
  (cond [(number? T) T]
        [(symbol? T) (lookup env T)]
        [(equal (first T) 'add) (+ (eval env (second T)) (eval env (third T)))]
        [else (error "bad input")]]))
```

```
(define global-env ...)
```

```
(define (eval T)
  (cond [(number? T) T]
        [(symbol? T) (lookup global-env T)]
        [(equal (first T) 'add) (+ (eval (second T)) (eval (third T)))]
        [else (error "bad input")]))
```

In the code given for the homework, **unicalc-db** is our global environment.
The functional approach has advantages, but you’d need to rewrite **normalize**, **add**, etc., to take the database-to-use as an extra argument, rather than referring directly to the global **unicalc-db**.
Defining Variables

Suppose we want to introduce a brand-new global variable x defined to be 7 (or change the value of an existing variable x to be 7)?
Defining Variables

Suppose we want to introduce a brand-new global variable \(x \) defined to be 7 (or change the value of an existing variable \(x \) to be 7)?

Functional Approach:

1. Define \(env' \) by adding \(x \rightarrow 7 \) to the existing \(env \).
2. From now on, use \(env' \).

Imperative Approach:

1. Modify the global environment so that \(x \) is now 7.
FUNCTIONS AND LOCAL VARIABLES

Global variables exist forever. Local variables appear and disappear. How might we evaluate '(apply-function f 7) where f takes a parameter x and returns the value of '(add x 1)?
FUNCTIONS AND LOCAL VARIABLES

Global variables exist forever. Local variables appear and disappear.

How might we evaluate '((apply-function f 7) where f takes a parameter x and returns the value of '(add x 1))?

Functional Approach:

1. Look up the parameters and body of f.
2. Define env' by adding x → 7 to the existing env
3. Recursively evaluate '(add x 1) using env'.
4. Ignore env' after we’re done; we don’t need it any more. Go back to using env which never changed.

Imperative Approach:

1. Look up the parameters and body of f.
2. Save the old global value of x (if any)
3. Set the parameter x to be 7 in the global environment.
4. Recursively evaluate '(add x 1), save the result.
5. Restore the old global value of x (if any)
6. Return the result.

Warning: this basically works, but gives you “dynamic scope,” which can lead to weird behavior.

You really want “closures,” as discussed in the Programming Languages class (CS 131).