Intermediate Representations

CS 132: Compiler Design

Monday, February 23, 2011
Types of Intermediate Representations

✓ Graphical
 ▶ Trees
 ▶ Graphs

✓ Linear
 ▶ E.g., real or idealized assembly code

✓ In-Between (Hybrid)
 ▶ E.g., graphs of linear basic blocks
 ▶ Combination of linear code + graphical information
Definition: Basic Block

A maximal sequence of instructions that is only entered at the first instruction and that may leave the sequence at the last instruction.
Types of Intermediate Representations

✓ High-Level
 ▶ Abstract primitives (invoking a virtual method, creating tuples, ...)
 ▶ Structured control

✓ Low-Level
 ▶ Assembly-level and/or hardware specific operations
 ▶ Data representations exposed

✓ In-Between
 ▶ Mostly low-level operations, plus a few “powerful” primitives
 ▶ E.g., invoke a method, throw/catch and exception
Advantages of High-Level/Low-Level Representations

val a = (1,3)
val b = (1,3)

a = malloc(8)
*a = 1
*(a+4) = 3
b = malloc(8)
*b = 1
*(b+4) = 3

val a = (1,3)
val b = (5,7)

a = malloc(8)
*a = 1
*(a+4) = 3
b = malloc(8)
*b = 5
*(b+4) = 7
Linear Representations

- Stack code (JVM, CIL, …)

- Three-address code (a.k.a. RTL, Quadruples)
 - Pseudo-assembly: very simple operations
 - Arbitrarily many temporaries
 - Conditional jumps to labels
 - Primitives for call/return
 - Memory load, stores

- Assembly language (x86, PowerPC, …)
i ← 1
j ← 1
k ← 0
L1:
 if k >= 100 goto done
 if j >= 20 goto L2
 j ← i
 j ← i
 k ← k + 1
 goto L3
L2:
 j ← k
 k ← k + 2
L3:
 j ← j - 1
 goto L1
Graphical Representations

✓ Parse trees
✓ Abstract syntax trees
 ▶ Source language
 ▶ Intermediate languages
 ▶ Assembly language
✓ Directed Acyclic Graphs
 ▶ Express sharing among subexpressions
✓ Graphs
 ▶ Control flow: nodes are expressions or basic blocks, arrows if control can pass from one node to the other.
 ▶ Dependence: nodes are expressions, arrows if a value created by the source will be used by the target.
 ▶ …
GCC 3.x
GENERIC and GIMPLE

<table>
<thead>
<tr>
<th>GENERIC</th>
<th>High GIMPLE</th>
<th>Low GIMPLE</th>
</tr>
</thead>
</table>
| if (foo (a + b, c))
c = b++ / a
endif
return c | t1 = a + b
t2 = foo (t1, c)
if (t2 != 0)
t3 = b
b = b + 1
c = t3 / a
endif
return c | t1 = a + b
t2 = foo (t1, c)
if (t2 != 0) <L1,L2>
L1:
t3 = b
b = b + 1
c = t3 / a
goto L3
L2:
L3:
return c |

11 March 2007
Static Single Assignment

Idea: every variable is written to exactly once in the code

\[
\begin{align*}
j & \leftarrow 0 \\
k & \leftarrow 2 \\
k & \leftarrow k + 1 \\
j & \leftarrow j + k
\end{align*}
\]
Static Single Assignment

Idea: every variable is written to exactly once in the code

\[
\begin{align*}
 j &\leftarrow 0 \\
 k &\leftarrow 2 \\
 k &\leftarrow k + 1 \\
 j &\leftarrow j + k
\end{align*}
\]

\[
\begin{align*}
 j1 &\leftarrow 0 \\
 k1 &\leftarrow 2 \\
 k2 &\leftarrow k1 + 1 \\
 j2 &\leftarrow j1 + k2
\end{align*}
\]

Advantage: Some optimizations are easier/more efficient

Difficulties?
i ← 1; j ← 1; k ← 1;
while (k < 100) do {
 j ← j - 1
 if (j < 20) then {
 j ← i
 k ← k+1
 } else {
 j ← k
 k ← k+2
 }
}
Phi Functions to the Rescue!

Assume a control-flow node has n incoming arrows.

Phi Functions to the Rescue!

Assume a control-flow node has n incoming arrows.

\[\phi(x_1, \ldots, x_n) := x_i \text{ where we entered via the } i\text{-th arrow} \]
Phi Functions to the Rescue!

Assume a control-flow node has n incoming arrows.

$$\phi(x_1, \ldots, x_n) := x_i \text{ where we entered via the i-th arrow}$$

Construct an SSA Control-Flow graph for the last code sequence.
We can eliminate the definition $x_i \leftarrow c$ (where c is a constant) by …

2. We can eliminate the definition $x_i \leftarrow y_j$ (where y_j is a variable) by …

3. An assignment $x_i \leftarrow e$ can be eliminated if …
Implementing SSA

Remaining issues

1. How can we actually implement code written with ϕ functions?
Implementing SSA

Remaining issues

1. How can we actually implement code written with ϕ functions?

2. How can we place the ϕ functions efficiently?
Dominators

In a CFG, B_1 dominates B_2 if every path from the start of the code to B_2 must pass through B_1.
Dominators

In a CFG, B_1 dominates B_2 if every path from the start of the code to B_2 must pass through B_1.
Dominators

In a CFG, B_1 **dominates** B_2 if every path from the start of the code to B_2 must pass through B_1.

Dataflow equation:

$$
\text{dom}(n) =
$$
Dominators

In a CFG, \(B_1 \) **dominates** \(B_2 \) if every path from the start of the code to \(B_2 \) must pass through \(B_1 \).

Dataflow equation:

\[
dom(n) = \{ n \} \cup \left(\bigcap_{m \in \text{pred } n} \dom(m) \right)
\]
Dominators

In a CFG, B_1 **dominates** B_2 if every path from the start of the code to B_2 must pass through B_1.

Dataflow equation:

$$\text{dom}(n) = \{n\} \cup \left(\bigcap_{m \in \text{pred} n} \text{dom}(m) \right)$$

Initial conditions: $\text{dom}(\text{entry}) = \{\text{entry}\}$, all other sets as large as possible. Why?
Dominators

In a CFG, B_1 *dominates* B_2 if every path from the start of the code to B_2 must pass through B_1.

Dataflow equation:

$$
\text{dom}(n) = \{n\} \cup \left(\bigcap_{\text{pred } n} \text{dom}(m) \right)
$$

Initial conditions: $\text{dom}(entry) = \{entry\}$, all other sets as large as possible. Why?

Efficiency improvement: work with immediate dominators.
Using Dominance Frontiers

The **dominance frontier** $DF(n)$ of a node n is the set of nodes m such that

1. n dominates an immediate predecessor of m
2. n does not strictly dominate m
Using Dominance Frontiers

The dominance frontier $DF(n)$ of a node n is the set of nodes m such that

1. n dominates an immediate predecessor of m
2. n does not strictly dominate m

Intuitively, look at all the paths going out of n; as soon as you find a node no longer strictly dominated by n, you’re in the frontier.
Using Dominance Frontiers

The dominance frontier $DF(n)$ of a node n is the set of nodes m such that

1. n dominates an immediate predecessor of m
2. n does not strictly dominate m

Intuitively, look at all the paths going out of n; as soon as you find a node no longer strictly dominated by n, you’re in the frontier.

A definition of x in node b forces a ϕ-function for x in every element of $DF(b)$.

$$x = \phi(x, \ldots, x)$$

These new ϕ functions act as new definitions, so we have to iterate this process. When done, go through and rename.
Example

```
# Initialize variables
i ← 1
j ← 1
k ← 1

# Loop condition
k < 100

# Loop body
N
j ← j-1
j < 20
j ← i
k ← k+1
j ← k
k ← k+2
Y

```

Diagram:

- Start node: i ← 1, j ← 1, k ← 1
- Decision node: k < 100
 - If true: N
 - If false: return
- Decision node: j < 20
 - If true: j ← j-1
 - If false: j ← i, k ← k+1
- Transition: j ← k, k ← k+2

Optional Pruning

The dominance-frontier method produces “minimal SSA”

✓ ϕ-functions exactly where

But we could prune further:

✓ If a variable is dead in a block, don’t insert a ϕ function there.
✓ Even more simply (but less optimally), only insert ϕ functions that are live at the end of some basic block.
A Simpler Algorithm: “Maximal SSA”

✓ Put a ϕ function for every variable at the start of every block!
✓ With care, we can add ϕ functions and do all renaming in a single pass.
Some ϕ functions can be easily removed

- $v_i \leftarrow \phi(v_i, \ldots, v_i)$ (trivially)
- $v_i \leftarrow \phi(v_i, v_j, v_i, v_j, v_j)$ (via substitution)

Theorem: Repeatedly remove such ϕ functions. If the graph is reducible, the final result will be minimal SSA.
Other Representations: λ-calculus based

```plaintext
i ← 1; j ← 1; k ← 1;
while (k < 100) do {
  j ← j - 1
  if (j < 20) then {
    j ← i
    k ← k+1
  } else {
    j ← k
    k ← k+2
  }
}
return;
```
Other Representations: λ-calculus based

```plaintext
let f(i, j2, k2) =
  if (k2 < 100) then
    let j3 = j2 - 1
    in if (j3 < 20) then
      let j4 = i
      in k3 = k2+1
      in f(i, j4, k3) end
    else
      let j5 = k2
      in f(i, j5, k4) end
  else
    (i, j2, k2)
  in f(1, 1, 1)
```

```plaintext
i ← 1; j ← 1; k ← 1;
while (k < 100) do {
  j ← j - 1
  if (j < 20) then {
    j ← i
    k ← k+1
  } else {
    j ← k
    k ← k+2
  }
}
return;
```
Other Representations: Continuation-Passing Style

```haskell
fib n =  
  if (n == 0) then  
    0  
  else if (n == 1) then  
    1  
  else  
    fib (n-1) + fib (n-2)
```
Other Representations: Continuation-Passing Style

\[
\text{fib } n = \\
\quad \text{if } (n == 0) \text{ then } 0 \\
\quad \text{else if } (n == 1) \text{ then } 1 \\
\quad \text{else } \text{fib } (n-1) + \text{fib } (n-2)
\]

\[
\text{fib } n \ k = \\
\quad \text{if } (n == 0) \text{ then } k 0 \\
\quad \text{else if } (n == 1) \text{ then } k 1 \\
\quad \text{else } \text{fib } (n-1) (\x \rightarrow \text{fib } (n-2) (\ y \rightarrow k (k+y)))
\]