Simple Optimizations

March 30, 2011
CS 132: Compiler Design
Instruction Scheduling

Form of latency hiding.

1. \(t_2 \leftarrow *t_1 \)
2. \(t_3 \leftarrow t_2 + 4 \)
3. \(t_1 \leftarrow *t_4 \)
4. \(t_5 \leftarrow *(t_4 + 4) \)
5. \(t_5 \leftarrow t_1 + t_5 \)
6. \(t_6 \leftarrow *(t_4 + 8) \)
7. \(t_5 \leftarrow t_2 + t_6 \)
8. \(t_4 \leftarrow t_5 + 12 \)
9. \(*t_8 \leftarrow t_7 \)
Dependencies

Two instructions s_1 and s_2 are have a dependency if there is a constraint on their relative order.

Dependencies in a basic block can be represented as a DAG:

- An edge from s_1 to s_2 if there is a dependency between them.
- Often, edges are labeled with latency information.
Dependencies

\(s_2 \) depends on \(s_1 \) if:

- \(s_1 \) writes a value that …
- \(s_1 \) writes a value that …
- \(s_1 \) reads a value that …
- \(s_2 \) is a jump that …
Dependencies

s_2 depends on s_1 if:

- ✔️ If s_1 writes a value that …
- ✔️ If s_1 writes a value that …
- ✔️ If s_1 reads a value that …
- ✔️ If s_2 is a jump that …

What is the dependency DAG for the previous page? (Assume loads take two cycles.)
Any topological sort of the dependence graph yields a valid ordering.
Scheduling

Any topological sort of the dependence graph yields a valid ordering

So, we just want to find the topological sort which minimizes execution time.
SCHEDULING

Any topological sort of the dependence graph yields a valid ordering.

So, we just want to find the topological sort which minimizes execution time.

Guess how easy this is?
Scheduling

Any topological sort of the dependence graph yields a valid ordering.

So, we just want to find the topological sort which minimizes execution time.

Guess how easy this is?
Greedy Heuristic: (Forward) List Scheduling

Assigns priorities based on max distance from a leaf.
Greedy Heuristic: (Forward) List Scheduling

Assigns priorities based on max distance from a leaf.

Repeatedly:

✓ Choose a ready instruction with the highest priority.
✓ Or, schedule an instruction whose predecessors have all been chosen and live with the stall.
Greedy Heuristic: (Forward) List Scheduling

Assigns priorities based on max distance from a leaf.

Repeatedly:

✓ Choose a ready instruction with the highest priority.

✓ Or, schedule an instruction whose predecessors have all been chosen and live with the stall.

Exercise: List-schedule the code.
In general, code cannot be re-ordered if it would affect effects.

For example, in SML, which of the following pairs of lines can be swapped?

\[
\begin{align*}
\text{val } x &= a \ast b \\
\text{val } y &= c \ast d \\
\text{val } x &= a \div b \\
\text{val } y &= c \div d
\end{align*}
\]
Peehole Optimization

Run through the code looking for specific instruction sequences to optimize:

```
movl %ebx, %ebx
addl $0, %eax
addl %ebx, %edx
addl $4, %edx
addl $8, %edx
jmp L1
L1:
   imull $4, %edx
   imull $6, %eax
```
Peephole Optimization

Run through the code looking for specific instruction sequences to optimize:

```assembly
movl %ebx, %ebx
addl $0, %eax
addl %ebx, %edx
addl $4, %edx
addl $8, %edx
jmp L1
L1:
imull $4, %edx
imull $6, %eax
```

(What about division by 2?)
32-bit Signed Division of r by 2
32-bit Signed Division of \(r \) by 2

1. Add 1 if \(r \) is negative.
32-bit Signed Division of r by 2

1. Add 1 if \(r \) is negative.
 - E.g., \(r \leftarrow r + (r \uparrow \gg 31) \)

2. Arithmetic shift right \((r \downarrow \gg 1)\).
32-bit Signed Division of r by 2

1. Add 1 if r is negative.
 - E.g., $r \leftarrow r + (r \gg 31)$

2. Arithmetic shift right ($r \gg 1$).

In general, to divide by 2^k,
1. Add $2^k - 1$ to r if r is negative
2. Arithmetic shift right ($r \gg k$).
32-bit Signed Division of \(r \) by 3
32-bit Signed Division of r by 3

- Get high 32 bits of 64-bit product

 $$r \times 0x55555556$$

- Increment result if r was negative
CONSTANT FOLDING / CONSTANT PROPAGATION

```c
int i = 3 + 8;
double d1 = sqrt(4.0);
double d2 = 1.0 / 3.0;
double d3 = 3.0 / 1.0;
double f = d3 / (d3 - 3.0);
int n = i / (i-11);

i = 12;
y = *(p+i);
x = i + 9;
```
Algebraic Simplification

```plaintext
int i1 = ...;
int i2 = i1 * 0 + i1;
int i3 = (4 + i2) - 2;
bool b1 = (i1 != i1);

double d1 = ...;
double d2 = (x + d1) - d1;
double d3 = d1 * 0.0;
double d4 = d1 + 0.0;
bool b2 = (d1 != d1);
```
Algebraic Simplification

```c
double oldeps;
double eps = 1.0;
while (eps + 1.0 > 1.0) {
    oldeps = eps;
    eps = 0.5 * eps;
}
```
Algebraic Simplification

double oldeps;
double eps = 1.0;
while (eps + 1.0 > 1.0) {
 oldeps = eps;
 eps = 0.5 * eps;
}

double oldeps;
double eps = 1.0;
while (eps > 0.0) {
 oldeps = eps;
 eps = 0.5 * eps;
}
Copy Propagation

\[
x = y; \\
z = 2\times x; \\
w = 2\times y;
\]
Dead Code Elimination

\[
\begin{align*}
w &= y; \\
z &= 2*y; \\
w &= 2*y;
\end{align*}
\]

\[
\begin{align*}
\text{while (1); \\
\text{launchNuclearMissile(); \\
\text{return;}
\end{align*}
\]
Loop Unrolling

What is the loop unrolling optimization? Why is it useful?
Is Loop Unrolling Really Helpful?

L1: x = *i
 s += x
 i += 4
 if (i<n) goto L1

↓

L1: x = *i
 s += x
 i += 4
 if (i>=n) goto L3

L2: x = *i
 s += x
 i += 4
 if (i<n) goto L1

L3:
Better?

L1: x = *i
 s += x
 i += 4
 if (i<n) goto L1

↓

L1: x = *i
 s += x
 x = *(i+4)
 s += x
 i += 8
 if (i<n) goto L1
Better?

L1: \(x = *i \)
 \(s += x \)
 \(i += 4 \)
 if \((i<n) \) goto L1

↓

if \(i > n-8 \) goto L2

L1: \(x = *i \)
 \(s += x \)
 \(x = *(i+4) \)
 \(s += x \)
 \(i += 8 \)
 if \((i<n-8) \) goto L1

L2: \(x = *i \)
 \(s += x \)
 \(i += 4 \)
 if \((i<n) \) goto L2