Sources

- http://www.computerhistory.org/timeline
- wikipedia
- other web sites
1953: Simultaneous I/O

- Introduced to absorb latency in I/O, by allowing processor to run in parallel with I/O.

- Gave rise the concept of an I/O channel.

- Introduced the idea of **fork & join**

- Related concepts such as cobegin & coend and parallel-for followed.
1960: Instruction Pipelining, Memory Interleaving

- IBM 7030 “Stretch” 7030
- 1.2 MIPS
- about 250,000 64-bit words of memory

Stretch maintenance console
1964, CDC 6600: Parallelism in Instruction Streams

CDC’s 6600 supercomputer, designed by Seymour Cray, performed up to 3 million instructions per second — a processing speed three times faster than that of its closest competitor, the IBM Stretch. The 6600 retained the distinction of being the fastest computer in the world until surpassed by its successor, the CDC 7600, in 1968. Part of the speed came from the computer’s design, which had 10 small computers, known as peripheral processors, funneling data to a large central processing unit.
1964: Multics OS

- Processes
- Memory segmentation
- Memory protection
1966-72: SIMD Architecture Illiac IV
(originally called the “Solomon” machine)

The Department of Defense Advanced Research Projects Agency contracted with the University of Illinois to build a large parallel processing computer, the ILLIAC IV, which did not operate until 1972 at NASA’s Ames Research Center. The first large-scale array computer, the ILLIAC IV achieved a computation speed of 200 million instructions per second, about 300 million operations per second, and 1 billion bits per second of I/O transfer via a unique combination of parallel architecture and the overlapping or "pipe-lining" structure of its 64 processing elements.

This photograph shows one of the ILLIAC’s 13 Burroughs disks, the debugging computer, the central unit, and the processing unit cabinet with a processing element.
1966: Flynn’s Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>Single Instruction</th>
<th>Multiple Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Data</td>
<td>SISD</td>
<td>MISD</td>
</tr>
<tr>
<td>Multiple Data</td>
<td>SIMD</td>
<td>MIMD</td>
</tr>
</tbody>
</table>
1966: Flynn’s Taxonomy
1967, IBM 360 model 91: Parallelism in Instruction Streams

IBM announced the System/360, a family of six mutually compatible computers and 40 peripherals that could work together. The initial investment of $5 billion was quickly returned as orders for the system climbed to 1,000 per month within two years. At the time IBM released the System/360, the company was making a transition from discrete transistors to integrated circuits, and its major source of revenue moved from punched-card equipment to electronic computer systems.
1971: Unix

- process fork
- wait rather than join
- pipes on command line
1974-79: ICL DAP

The Distributed Array Processor (DAP) produced by International Computers Limited (ICL) was the world's first commercial massively parallel computer. The original paper study was complete in 1972 and building of the prototype began in 1974.

The ICL DAP had 64x64 single bit processing elements (PEs) with 4096 bits of storage per PE. It was attached to an ICL mainframe and could be used as normal memory. Programs for the DAP were written in DAP FORTRAN which was FORTRAN extended with 64x64 matrix and 64 element vector primitives. It had a Single Instruction Multiple Data (SIMD) architecture.
1975: Tandem Fault Tolerance

Tandem computers tailored its Tandem-16, the first fault-tolerant computer, for online transaction processing. The banking industry rushed to adopt the machine, built to run during repair or expansion.
1976: Cray Vector Processor

The Cray I made its name as the first commercially successful vector processor. The fastest machine of its day, its speed came partly from its shape, a C, which reduced the length of wires and thus the time signals needed to travel across them.

Project started: 1972
Project 1976
completed:

- Speed: 166 million floating-point operations per second
- Size: 58 cubic feet
- Weight: 5,300 lbs.
- Technology: Integrated circuit
- Clock rate: 83 million cycles per second
- Word length: 64-bit words
- Instruction set: 128 instructions
1982: Parallel Vector Processor

- The Cray XMP, first produced in this year, almost doubled the operating speed of competing machines with a parallel processing system that ran at 420 million floating-point operations per second, or megaflops. Arranging two Crays to work together on different parts of the same problem achieved the faster speed. Defense and scientific research institutes also heavily used Crays.
'Apple Computer purchased a big Cray supercomputer in the mid-1980s. In fact, Steve Jobs was Cray's first and only walk-in customer. He arrived unannounced at Cray headquarters in Mendota Heights, Minnesota and asked to speak to someone about buying a Cray. They nearly threw him out.

'Later, Cray president John Rollwagen phoned Seymour and told him that Apple had just purchased a Cray that would be used in designing the next Macintosh. Seymour thought for a bit, and replied that it seemed reasonable, since he was using a Macintosh to design the next Cray!'
1979-1983: Goodyear MPP
(Massively Parallel Processor)

Based on Goodyear's earlier STARAN array processor, a 4x256 1-bit processing element (PE) computer.

The MPP was a 128x128 2-dimensional array of 1-bit wide PEs.
1980’s: Sequent SMP

Balance

Sequent's first computer systems were the Balance 8000 and Balance 21000 released in 1984.[5] The Balance 21000 included up to twenty 8 MHz National Semiconductor NS32016 processors (in multiples of 2), each with a small write-through cache connected to a common memory to form a shared memory system with SCSI and Ethernet. The systems ran a modified version of 4.2BSD Unix the company called DYNIX, for DYNamic unIX. The machines were designed to compete with the DEC VAX-11/780, with all of their inexpensive processors available to run any process. In addition the system included a series of libraries that could be used by programmers to develop applications that could use more than one processor at a time. The Balance systems were originally intended to be sold to OEMs as computing
1980’s: Sequent SMP
(example: HMC’s jarthur)

Symmetry

Their next series was the Intel 80386-based Symmetry, released in 1987. Various models supported between 2 and 30 processors, using a new copy-back cache and a wider 64-bit memory bus. 1991’s Symmetry 2000 models added multiple SCSI boards, and were offered in versions with from one to six Intel 80486 processors. The next year they added the VMEbus based Symmetry 2000/x50 with faster CPUs.

The late 1980s and early 1990s saw big changes on the software side for Sequent. DYNIX was replaced by DYNIX/ptx, which was based on a merger of AT&T's UNIX System V and 4.2BSD. And this was during a period when Sequent's high-end systems became particularly successful due to a close working relationship with Oracle, specifically their high-end database servers. In 1993 they added the
1983: Hypercube Interconnect
(example: HMC’s henry, 2nd floor Sprague)

- Cosmic Cube at Caltech
 - Used 8086 chips

- iPSC at Intel
 - Used 8086 chips, multiple ethernet cards to interconnect

- nCUBE corp.: 1024 custom architecture
1986: Connection machine

Daniel Hillis of Thinking Machines Corp. moved artificial intelligence a step forward when he developed the controversial concept of massive parallelism in the Connection Machine. The machine used 16,000 processors and could complete several billion operations per second. Each processor had its own small memory linked with others through a flexible network that users could alter by reprogramming rather than rewiring.

The machine’s system of connections and switches let processors broadcast information and requests for help to other processors in a simulation of brainlike associative recall. Using this system, the machine could work faster than any other at the time on a problem that could be parcelled out among the many processors.
1988: Posix Threads

- POSIX = Portable Operating System Interface [for Unix]
- Standardized multithreading in C
1987: BBN Butterfly
(BBN = “Bolt, Beranek, and Newman”)

- Butterfly interconnect
- NUMA (non-uniform memory access) architecture
1987: Parallel Inference Machine

Japanese 5th Generation Project
1989: PVM

- PVM = Parallel Virtual Machine
- Developed at Oak Ridge National Laboratory (ORNL)
1991: Directory-Based Cache Coherence

Stanford DASH
1991: CM-5

With the CM-5, announced in 1991, Thinking Machines switched from the CM-2's hypercubic architecture of simple processors to an entirely new MIMD architecture based on a fat tree network of SPARC RISC processors.
1993: NOW (Network of Workstations) "Beowulf" Clusters

John Koza’s 1000 node cluster, 1999
Used for Genetic Programming
1994: MPI

- MPI = “Message Passing Interface”
- Developed at Argonne National Laboratory
- Became the de facto standard for distributed multiprocessing
1995: Cray T3E-1200

- Distributed memory
- 32 to 2048 processing elements (PEs)
- 8 Million words (64 MB) per PE
- PE: DEC Alpha, 1200 Mflops
- 2.4 teraflops maximum
- 3-D torus interconnect
- interprocessor comm. rate: 500 MB/s
- starting at the paltry sum of $630,000
1995: Java

- Integral multithreading
- Developed at SUN Microsystems
1996: Deep Blue: Chess Playing

Massively parallel, RS/6000 SP Thin P2SC-based system with 30-nodes, with each node containing a 120 MHz P2SC microprocessor for a total of 30, enhanced with 480 special purpose VLSI chess chips.

1997: ASCI Red

- Intel i4640 nodes
- Housed at Sandia National Laboratory
- 666 MOPs peak per node
- 606 GB memory
1997: Distributed Apps

- distributed.net (Jeff Lawson ‘99, et al.)
2003: IBM SP3

- 1-8 processors, shared memory
- up to 16 GB memory
- networkable to 512 processors
- PE: IBM RS/6000
- 2-level coherent cache
- 14.2 GB/s crosspoint switch
- Cost for 128 PE version:

 only $8,614,441
2006: SGI Origin 3000 series

- 16-512 processors
- up to 1 TB shared memory
- R12000 processors, 300 MHz
- NUMA architecture
- 38.4 Gflops for 64 processors
- 716 GB/s system bandwidth
- Cost starting around $300k
2005-2008:
Red Storm (Cray-Designed) at Sandia

<table>
<thead>
<tr>
<th>Operational Time Frame</th>
<th>2005</th>
<th>2006</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Peak (TF)</td>
<td>41.47</td>
<td>124.42</td>
<td>284.16</td>
</tr>
<tr>
<td>HPL Performance (GF)</td>
<td>36190 on 10,880 processors</td>
<td>101400 on 26,544 processors</td>
<td>204200 on 38,208 processors</td>
</tr>
<tr>
<td>Architecture</td>
<td>distr memory MIMD</td>
<td>distr memory MIMD</td>
<td>distr memory MIMD</td>
</tr>
<tr>
<td>Number of compute processors</td>
<td>10,368</td>
<td>25,920 (12,960 nodes)</td>
<td>38,400 (12,960 nodes)</td>
</tr>
<tr>
<td>Number of service/IO processors</td>
<td>256 + 256</td>
<td>320+320</td>
<td>320+320</td>
</tr>
<tr>
<td>Processor</td>
<td>AMD Opteron™ @ 2.0 GHz</td>
<td>AMD dual core Opteron™ @ 2.4 GHz</td>
<td>6720 AMD dual-core Opteron™ @ 2.4 GHz</td>
</tr>
<tr>
<td></td>
<td>6240 AMD quad-core Opteron™ @ 2.2 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Memory</td>
<td>33.38TB</td>
<td>39.19 TB</td>
<td>78.75 TB</td>
</tr>
<tr>
<td>System Memory B/W</td>
<td>57.97 TB/s</td>
<td>78.12 TB/s</td>
<td>126.29 TB/s</td>
</tr>
<tr>
<td>User Disk Storage</td>
<td>240 TB</td>
<td>540 TB</td>
<td>4752 TB</td>
</tr>
</tbody>
</table>
The first computer in the Blue Gene series, Blue Gene/L, developed through a partnership with Lawrence Livermore National Laboratory (LLNL), originally had a theoretical peak performance of 360 TFLOPS.

The archetypal Blue Gene/Q system called Sequoia will be installed at Lawrence Livermore National Laboratory in 2011 as a part of the Advanced Simulation and Computing Program running nuclear simulations and advanced scientific research.

It will consist of 98,304 compute nodes comprising 1.6 million processor cores and 1.6 PB memory in 96 racks covering an area of about 3000 square feet, drawing 6 megawatts of power.
2007: Cray XT5 (Jaguar, Kraken)

As the single most scalable Linux supercomputer, the Cray XT5™ system combines unprecedented sustained application performance with exceptional manageability and reliability, and lower cost of ownership for customers.

Using powerful AMD Opteron™ processor cores, the Cray XT5 system supports both Cray XT4™ blades for optimized compute/interconnect balance and the new Cray XT5 blades optimized for memory-intensive and/or compute-biased workloads.

Oak Ridge National Laboratory's (ORNL) "Jaguar" supercomputer, a Cray XT5 system, is the fastest in the world for open science.

Request a Quote
Moore’s “Law”
Moore's original statement that transistor counts had doubled every year can be found in his publication "Cramming more components onto integrated circuits", Electronics Magazine 19 April 1965:

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year...

Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.

Moore slightly altered the formulation of the law over time, in retrospect bolstering the perceived accuracy of his law. Most notably, in 1975, Moore altered his projection to a doubling every two years. Despite popular misconception, he is adamant that he did not predict a doubling "every 18 months". However, David House, an Intel colleague, had factored in the increasing performance of transistors to conclude that integrated circuits would double in performance every 18 months.

Moore’s Law and Processor Speeds

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)
2007: Nvidia GPUs and CUDA

On high-end NVIDIA video cards, upwards of 300 million keys/second (on a code-breaking problem) has been reported. Considering a very high end single CPU may achieve 50 million keys/second, the CUDA advancement represents a performance increase of roughly 500%.

2010 (Nov.): Current Top 500 SC Sites

http://www.top500.org/

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>National Supercomputing Center in Tianjin, China</td>
<td>Tianhe-1A - NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C NUDT</td>
</tr>
<tr>
<td>2</td>
<td>DOE/SC/Oak Ridge National Laboratory, United States</td>
<td>Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.</td>
</tr>
<tr>
<td>3</td>
<td>National Supercomputing Centre in Shenzhen (NSCS), China</td>
<td>Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU Dawnning</td>
</tr>
<tr>
<td>4</td>
<td>GSIC Center, Tokyo Institute of Technology, Japan</td>
<td>TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows NEC/HP</td>
</tr>
<tr>
<td>5</td>
<td>DOE/SC/LBNL/NERSC, United States</td>
<td>Hopper - Cray XE6 12-core 2.1 GHz Cray Inc.</td>
</tr>
<tr>
<td>6</td>
<td>Commissariat a l'Energie Atomique (CEA), France</td>
<td>Tera-100 - Bull bulix super-node S6010/S6030 Bull SA</td>
</tr>
<tr>
<td>7</td>
<td>DOE/NNSA/LANL, United States</td>
<td>Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM</td>
</tr>
<tr>
<td>8</td>
<td>National Institute for Computational Sciences/University of Tennessee, United States</td>
<td>Kraken XT5 - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.</td>
</tr>
<tr>
<td>9</td>
<td>Forschungszentrum Juelich (FZJ), Germany</td>
<td>JUGENE - Blue Gene/P Solution IBM</td>
</tr>
<tr>
<td>10</td>
<td>DOE/NNSA/LANL/SNL, United States</td>
<td>Cielo - Cray XE6 8-core 2.4 GHz Cray Inc.</td>
</tr>
</tbody>
</table>
Slicing the Top 500 Pie by vendor
Slicing the Top 500 Pie by country
Slicing the Top 500 Pie by processor family
Slicing the Top 500 Pie by interconnect family

- Gigabit Ethernet
- Infiniband
- Proprietary
- Custom
- Others
Slicing the Top 500 Pie by operating system
Vendor Share vs. Time

Processor families in TOP500 supercomputers
Country vs. Time

Figure 4: Supercomputer installations worldwide

http://www.top500.org/files/TOP500_Looking_back_HWM.pdf
Figure 17: Architectures / Systems
Example Applications
Rayleigh-Taylor (Turbulence) Simulation

A parallelized compressible PPM (Piecewise Perturbation Method) code used to simulate the Rayleigh-Taylor instability and turbulent mixing. The domain is a unit cube spanned by a grid containing 512 points in each of the three directions. This case was run on the ASCI Blue-Pacific ID System at LLNL using 128 nodes.
Global Weather Forecasts
http://www.ecmwf.int

ECMWF S3 ocean analysis
Averaged Temperature upper 300m
Contour interval = 2 deg C

20110116 (1 days mean)
Reactor Modeling

Steady-state solution for the deposition of Gallium Arsenide from GaMe3 and AsH3 in a horizontal CVD reactor with tilted susceptor and rotating substrate. Streamlines and contours of GaMe3 on the reacting surface illustrate the 3D nature of the flow. This MPSalsa calculation of 430,000 unknowns required approximately 15 minutes on 256 processors of an Intel Paragon.
Virtual Supercomputers (grid, cloud)

Screensaver aids cancer fight

PC spare capacity will be used to examine molecules. A computer screensaver is launched on Tuesday that will help scientists find a cure for cancer.