Regular Languages, Continued Again

March 30, 2011

CS 81: Computability and Logic
Closure Properties

A family of languages is a set of languages.

✓ The family of all finite languages
✓ The family of all languages
✓ The family of all regular languages

A family F is closed under an operation if applying the operation to languages in F always produces a result in F.
Finite Languages

Is the family of finite languages closed under:

✓ Union? \((A \cup B)\)
✓ Intersection \((A \cap B)\)
✓ Concatenation? \((AB)\)
✓ Star \((A^*)\)
✓ Complement \((A^c)\)
Regular Languages

The regular languages are closed under

✓ Union? \((A \cup B)\)
✓ Intersection \((A \cap B)\)
✓ Concatenation? \((AB)\)
✓ Star \((A^*)\)
✓ Complement \((A^c)\)

Proofs: Consider the corresponding automata...
COMPLEMENT?
COMPLEMENT!

Graph representation of a complement of a given automaton.
COMPLEMENT!

\[
\begin{align*}
\text{X} & \text{A} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]

\[
\begin{align*}
\text{A} & \text{X} \\
& a \quad \text{c} \\
\text{B} & \text{b} \\
\end{align*}
\]
COMPLEMENT!

\[\text{DFA } M = (\Sigma, Q, \rightarrow, q_0, F) \]
\[\text{DFA } M^c = (\Sigma, Q, \rightarrow, q_0, Q \setminus F) \]
INTERSECTION: DFA INPUTS
INTERSECTION: PRODUCT AUTOMATON
Intersection: Product Automaton

DFA $M = (\Sigma, Q, \rightarrow, q_0, F)$

DFA $M' = (\Sigma, Q', \rightarrow', q'_0, F')$

DFA $M \cap M' = (\Sigma, Q \times Q', \rightarrow_{both}, \langle q_0, q'_0 \rangle, F \times F')$.
State Machine Optimization

If two states have the same language, they can be merged without changing the language of the state machine.
State Machine Optimization

If two states have the same language, they can be merged without changing the language of the state machine.
State Machine Optimization

If two states have the same language, they can be merged without changing the language of the state machine.
EXAMPLE
One DFA Minimization Algorithm

Assume all states are mergable unless there’s evidence otherwise:

✓ Accepting vs. nonaccepting.
✓ Same-symbol transitions to known-different states.
More Complex Example

A graph with states A, B, C, and D, labeled with transitions labeled with symbols a, b, and ε, illustrating the concept of a more complex example in formal language theory.
More Complex Example

```
A B b

C a, b

D a, b

A B a

A B D b

A B C D a

B C b

C D a, b

C D b

D a

A B C D a
```
More Complex Example
More Complex Example

![Diagram of a more complex example in automata theory](image-url)
Bigger Example
Bigger Example
Derivatives of a Language

For any language L and $x \in \Sigma^*$, define

$$\partial_x L := \{ y \in \Sigma^* \mid xy \in L \}$$
Derivatives of a Language

For any language L and $x \in \Sigma^*$, define

$$\partial_x L := \{ y \in \Sigma^* | xy \in L \}$$

In terms of a state machine for L, the set $\partial_x L$ contains strings that will be accepted after you’ve already seen x.
Derivatives of a Language

For any language L and $x \in \Sigma^*$, define

$$\partial_x L := \{ y \in \Sigma^* | xy \in L \}$$

In terms of a state machine for L, the set $\partial_x L$ contains strings that will be accepted after you’ve already seen x.

So, if you run x through a state machine for L, you end up in a state whose language is $\partial_x L$.
Derivatives of a Language

For any language L and $x \in \Sigma^*$, define

$$\partial_x L := \{ y \in \Sigma^* \mid xy \in L \}$$

In terms of a state machine for L, the set $\partial_x L$ contains strings that will be accepted after you’ve already seen x.

So, if you run x through a state machine for L, you end up in a state whose language is $\partial_x L$.

In a minimal DFA, we would have exactly one state whose language is $\partial_x L$.
Consequence

Theorem (Myhill-Nerode (essentially))

A language is regular iff \(\partial_x L \mid x \in \Sigma^* \) is finite.
Consequence

Theorem (Myhill-Nerode (essentially))

A language is regular iff \(\partial_x L | x \in \Sigma^* \) *is finite.*

Proof idea: The size of this set is the size of the smallest deterministic finite-state machine.
Consequence

Theorem (Myhill-Nerode (essentially))

A language is regular iff \(\{ \partial_x L \mid x \in \Sigma^* \} \) is finite.

Proof idea: The size of this set is the size of the smallest deterministic finite-state machine.

Consider

\(L := \{ a^{3n} \mid n \geq 0 \} \)
Theorem (Myhill-Nerode (essentially))

A language is regular iff $\{ \partial_\chi L \mid \chi \in \Sigma^* \}$ is finite.

Proof idea: The size of this set is the size of the smallest deterministic finite-state machine.

Consider

$L := \{ a^{3n} \mid n \geq 0 \}$

$\partial_\varepsilon L = \partial_{aaa} L = \cdots$, $\partial_a L = \partial_{aaa} a L = \cdots$, $\partial_{aa} L = \partial_{aaa} a a L = \cdots$
Consequence

Theorem (Myhill-Nerode (essentially))

A language is regular iff \(\{ \partial_x L \mid x \in \Sigma^* \} \) is finite.

Proof idea: The size of this set is the size of the smallest deterministic finite-state machine.

Consider

✓ \(L := \{ a^{3n} \mid n \geq 0 \} \)

\(\partial_\varepsilon L = \partial_{aaa} L = \cdots \), \(\partial_a L = \partial_{aaa} L = \cdots \), \(\partial_{aa} L = \partial_{aaa} L = \cdots \)

✓ \(L := \{ 0^n 1^n \mid n \geq 0 \} \)
Consequence

Theorem (Myhill-Nerode (essentially))

A language is regular iff \(\partial_\chi L \mid \chi \in \Sigma^* \) is finite.

Proof idea: The size of this set is the size of the smallest deterministic finite-state machine.

Consider

\[L := \{ a^{3n} \mid n \geq 0 \} \]
\[\partial_\varepsilon L = \partial_{aaa} L = \cdots, \quad \partial_a L = \partial_{aaa} L = \cdots, \quad \partial_{aa} L = \partial_{aaaa} L = \cdots \]

\[L := \{ 0^n 1^n \mid n \geq 0 \} \]
\[\partial_\varepsilon L \neq \partial_0 L \neq \partial_{00} L \neq \partial_{000} L \neq \cdots \]
Maze Theory

✓ Suppose you enter a maze of twisty passages, all alike. (but with doors that open from only one side)
Maze Theory

✓ Suppose you enter a maze of twisty passages, all alike. (but with doors that open from only one side)

✓ You happen to know that your maze has exactly 19 rooms. You start wandering and pass through 27 rooms. What can you conclude?
Maze Theory

✓ Suppose you enter a maze of twisty passages, all alike. (but with doors that open from only one side)

✓ You happen to know that your maze has exactly 19 rooms. You start wandering and pass through 27 rooms. What can you conclude?

✓ This wandering has brought you to an exit. What can you conclude about other solutions to the maze?
Maze Theory

✓ Suppose you enter a maze of twisty passages, all alike. (but with doors that open from only one side)

✓ You happen to know that your maze has exactly 19 rooms. You start wandering and pass through 27 rooms. What can you conclude?

✓ This wandering has brought you to an exit. What can you conclude about other solutions to the maze?

✓ Was there anything special about the numbers 19 and 27?
Finite Maze Theorem

For every finite maze there is a number p, such that

For every path through the maze s with $|s| \geq p$:

- The path s contains at least one loop, which starts and ends within the first p steps.
- There are infinitely many paths through the maze (at least one shorter, and arbitrarily many longer) whose lengths differ by a multiple of some constant.
Finite Maze Theorem

For every finite maze there is a number p, such that

For every path through the maze s with $|s| \geq p$:

- The path s contains at least one loop, which starts and ends within the first p steps.
- There are infinitely many paths through the maze (at least one shorter, and arbitrarily many longer) whose lengths differ by a multiple of some constant.
FINITE AUTOMATA AS MAZES

Diagram of a finite automaton with states labeled as follows:
- AB
- ABD
- ABCD
- C
- CD
- D

Transitions:
- AB to ABD on b
- ABD to ABCD on b
- C to D on a
- D to ABD on a
- ABD to D on a
- ABCD to C on b
- CD to ABD on a
- CD to D on b
- D to ABCD on a
A PUMPING LEMMA

If L is a regular language, then

there exists a number p such that

For every $s \in L$ with $|s| \geq p$

we can decompose s into xyz where

1. $y \neq \varepsilon$
2. $|xy| \leq p$
3. $xy^iz \in L$ for every $i \geq 0$.
A Pumping Lemma

If L is a regular language, then there exists a number p such that

For every $s \in L$ with $|s| \geq p$

we can decompose s into xyz where

1. $y \neq \epsilon$
2. $|xy| \leq p$
3. $xy^iz \in L$ for every $i \geq 0$.

Deriving a Useful Corollary

The Pumping Lemma tells us that:

If L is regular,
then every long-enough string in L can be pumped.
Deriving a Useful Corollary

The Pumping Lemma tells us that:

If L is regular,

then every long-enough string in L can be pumped.

What logically follows?

✓ If every long string in L can be pumped, then L is regular
✓ If there’s a long string in L that can be pumped, then L is regular
✓ If not every long string in L can be pumped, then L isn’t regular
✓ If there’s a long string in L that can’t be pumped, then L isn’t regular
Deriving a Useful Corollary

The Pumping Lemma tells us that:

If L is regular,
then every long-enough string in L can be pumped.

What logically follows?

✓ If not every long string in L can be pumped,
then L isn’t regular!

✓ If there’s a long string in L that can’t be pumped,
then L isn’t regular!
Using the Pumping Lemma

To prove a language isn’t regular:

- **✓** Suppose L were regular, with pumping length p
 - Carefully pick a long ($\geq p$) string $s \in L$
 - Show that s cannot be pumped

- **✓** Contradiction. Therefore, L is not regular.

You cannot use it to prove a language is regular!

- **✓** E.g., non-regular languages with every string pumpable

 $$\{a^i b^j c^j | i \geq 1, j \geq 0\} \cup \{b^j c^k | j, k \geq 0\} \quad p = 1$$
\[L = \{0^n1^n \mid n \geq 0\} \]

Suppose \(L \) were regular

✓ Let \(p \) be the pumping length
\[L = \{ 0^n1^n \mid n \geq 0 \} \]

Suppose \(L \) were regular

- Let \(p \) be the pumping length
- Consider, for example, \(s := 0^p1^p \). (Note that \(|s| \geq p \).)
L = \{ 0^n1^n | n \geq 0 \}

Suppose L were regular

✓ Let p be the pumping length
✓ Consider, for example, s := 0^p1^p. (Note that |s| \geq p.)
✓ Consider all possible decompositions

\[s = xyz \text{ with } y \neq \varepsilon \land |xy| \leq p. \]
\[L = \{0^n1^n \mid n \geq 0\} \]

Suppose \(L \) were regular

- Let \(p \) be the pumping length
- Consider, for example, \(s := 0^p1^p \). (Note that \(|s| \geq p \).)
- Consider all possible decompositions

 \[s = xyz \text{ with } y \neq \varepsilon \land |xy| \leq p. \]

- None of them work for pumping.
$L = \{ 0^n1^n \mid n \geq 0 \}$

Suppose L were regular

✓ Let p be the pumping length

✓ Consider, for example, $s := 0^p1^p$. (Note that $|s| \geq p$.)

✓ Consider all possible decompositions

$$s = xyz \text{ with } y \neq \varepsilon \land |xy| \leq p.$$

✓ None of them work for pumping.

✓ Contradiction.
\[L = \{ 0^n 1^n \mid n \geq 0 \} \]

Suppose \(L \) were regular

✓ Let \(p \) be the pumping length
✓ Consider, for example, \(s := 0^p 1^p \). (Note that \(|s| \geq p \).)
✓ Consider all possible decompositions

\[s = xyz \quad \text{with} \quad y \neq \varepsilon \land |xy| \leq p. \]

✓ None of them work for pumping.
✓ Contradiction.

So \(L \) is not regular. QED.