Predicate Calculus Language

- E is the start symbol
- E ::= A // Atom (atomic formula)
 - E // Negation (not)
 - E ∧ E // Conjunction (and)
 - E ∨ E // Disjunction (or)
 - E → E // Implication (implies)
 - E ↔ E // If-and-only-if
 - ⊥ // Bottom
 - T // Top
 - ∀V E // Universally-quantified formula
 - ∃V E // Existentially-quantified formula

- V means **variable symbol** (see next page)
- Precedence, tightest first: ∀ ∃ ¬ ∧ ∨ → ↔
- Atom (A) now requires a more complex production
Atomic Formula

- Informally, evaluates to a truth value \{T or F\}, once argument individuals are substituted.
Atomic Formulas

- **A** ::= $P(L)$ // Predicate applied to list of terms
- **L** ::= $T | T , L$ // List of terms
- **T** ::= $V | C | F(L)$ // Term
- **V** ::= 'x' | 'y' | 'z' | ... // Variable symbols
- **P** ::= 'p' | 'q' | 'r' | ... // Predicate symbols
- **C** ::= 'a' | 'q' | 'c' | ... // Constant symbols
- **F** ::= 'f' | 'g' | 'h' | ... // Function symbols

Some predicates and functions may be abbreviated in infix form, e.g.
 - '=' '<' ... will be infix predicate symbols
 - '+' '*' '/' ... will be infix function symbols

We will not bother with a special grammar for these, although it can be done.
Arities

- In addition, predicate and function symbols have an “arity” (number of arguments) which we don’t show explicitly.

- Most of the time, we will **not overload** the symbols, but rather assume a fixed arity for a given symbol.

- So we will **not** typically use both $f(a, b)$ (2–ary) and $f(a)$ (1–ary), for example, in the same discussion.
Quantifiers

- \forall is a “wholesale” version of \land

- \exists is a “wholesale” version of \lor

- $\forall x \ P(x)$ is like $P(x_0) \land P(x_1) \land P(x_2) \land \ldots$

except that we don’t know how many elements there are.
Quantifiers

- $\forall x \ P(x)$ is like $P(x_0) \land P(x_1) \land P(x_2) \land \ldots$

 just as $\sum X f(x)$ is like $f(x_0) + f(x_1) + f(x_2) + \ldots$
“Terms”: a term to remember

- A **term** designates an individual in a domain (to be introduced later).

- A term can be:
 - A **constant symbol**, naming the individual
 - A **variable symbol**, naming a generic individual
 - A **function** applied to some terms as arguments, the result of which is **the individual the function produces**.
Examples of Terms

- \(b \) constant symbol
- \(y \) variable symbol
- \(f(b, y) \) function applications
- \(g(h(b), c, h(y)) \)
- \(g(a, b, g(a, b, c)) \)
Examples of Atomic Formulas

- $p(b)$
- $q(y)$
- $p(f(b, y))$
- $r(a, g(h(b), c, h(y)))$
Examples of “Literals”

- A **literal** is an atomic formula, or the negation of an atomic formula.
 - $p(b)$
 - $\neg q(y)$
 - $\neg p(f(b, y))$
 - $r(a, g(h(b), c, h(y)))$

- Literals become important in resolution theorem proving, discussed later.
Examples of Quantifier-Free Formulas

- Any atomic formula
- $p(b) \lor p(c)$
- $p(y) \land q(y)$
- $p(f(b, y)) \rightarrow q(y)$
- $\neg r(a, g(h(b), c, h(y)))$
Examples of Formulas

- Any Quantifier-Free Formula
- \(\exists x \ p(x) \)
- \(\forall y \ (p(y) \land q(y)) \)
- \(\forall y \ \exists x \ (p(f(x, y)) \rightarrow q(y)) \)
- \(\forall x \ (p(f(x, y)) \lor q(x)) \)
- \(\forall y \ (q(y) \rightarrow \exists x \ p(f(x, y))) \)
Preview of Semantics

• We will give details of semantics later on. However, a preview is helpful to understand certain syntactic considerations.

• Predicate logic can be used to describe characteristics of particular kinds of structures, such as sets with certain algebraic properties.

• The particular structures are called “Interpretations”.
Example:

Interpretation for the natural numbers

- The intended domain is \{0, 1, 2, 3, \ldots\}.

- There is a constant symbol 0.

- There is a 1-ary function \(s\) (successor).
 Informally, \(s(n) = n+1\).

- There is a 2-ary predicate \(=\) (equals).
Individuals

- Any individual natural number can be described by a term
 - 0 describes the number ‘0’
 - $s(T)$ where T is a term, describes $1+ \text{ the number described by } T$.
 - $s(0)$ describes ‘1’
 - $s(s(s(s(s(s(s(s(0))))))))))$ describes ___?
Some formulas for this interpretation

- $\forall n \neg (s(n) = 0)$

 “0 is not the successor of anything”.

- $\forall m (\neg (m = 0) \rightarrow (\exists n) (m = s(n)))$

 “Anything other than 0 is the successor of something”.

- $\forall m \forall n ((s(m) = s(n)) \rightarrow m = n)$

 “Successor is a one-to-one function”.

Example:

Interpretations for “Groups”

- The domain is non-empty.

- The domain can be finite or infinite.

- There is a constant symbol e (identity element of the group).

- There is a 2-ary function f (group “multiplication”).

- There is a 2-ary predicate $=$ (equals).
Some formulas for groups

• $\forall x \ f(e, x) = x$
 [e is an identity]

• $\forall x \ \forall y \ \forall z \ f(x, f(y, z)) = f(f(x, y), z)$
 [f is associative]

• $\forall x \ \exists y \ f(x, y) = e$
 [existence of inverse]
Examples of Groups

• Trivial group: \{0\} e = 0, f(0, 0) = 0

• 2-element group: \{0, 1\} e = 0, f(x, y) = x + y \pmod{2}

• \(\mathbb{Z}_p\): \{0, 1, \ldots, p-1\} for any prime p,
 \(e = 0, f(x, y) = x + y \pmod{p}\)

• Tire rotations

• Particle spins (physics)

• Rubik’s cube twists

• Many others
Examples of Groups

- 4 elements
- braids
- cellular automaton based on group
- spins
- twists: 43252003274489856000 elements

\[|\psi\rangle \rightarrow e^{-\frac{i}{\hbar} (2\pi) S_z} |\psi\rangle = - |\psi\rangle \]
Joke involving groups... By Tommaso Dorigo

- At PhyStat 2011, ... Kyle Cranmer was showing results of very CPU-intensive calculations of renormalization-group equations used to derive measurable parameters of Supersymmetry from the value of basic parameters at a high-energy scale.

- He was mentioning that the original calculation used to take 720 CPU-days, but that they had found a series of shortcuts using neural networks, and the result was a huge improvement in speed: this was now a 1-minute calculation!

- Sitting in second row next to me was John Conway ... As Kyle was describing the new program with its speedy calculation of SUSY model parameters and likelihoods, he went audibly: "Is there an iPhone app for that?".
Inside Joke

• Q: Why didn't Newton discover group theory?

• A: Because he wasn't Abel.
Syntax Trees (or “Parse” Trees)

- We are assuming familiarity with syntax trees from CS 60.
- $\forall x$, $\exists x$ are treated as if 1-ary operators.
- Example: $\forall x ((\exists y \ p(\ g(x, y))) \lor q(x))$
Free and Bound Variable Instances

Free

Bound
Free and Bound Variable Instances
Free and Bound Variable Instances

∀x

∀x → v

p → g → x

q → x

y free

bound

bound

bound
Free and Bound Variable Instances
Scope of Variables

- The same variable may be used more than once in a formula, with different “meanings”.

- The idea of **scope** clarifies these separate meanings.

- For a formula $\forall x \ E$, or $\exists x \ E$, the scope of x extends only inside E, and not beyond.

- Similar to scope in programming languages
Scope Defined Inductively

- For a quantifier-free formula, the scope of each variable is the entire formula.

- For $\forall x \ E$, or $\exists x \ E$, the scope of x is inside E, but not including inside any quantification of the same variable inside E.

- Example: Two distinct scopes of x:

 $\forall x \ (p(x) \lor \exists x \ (q(x) \land r(x)) \lor s(x, y))$
Renaming Variables

- Although not required, it is better to avoid using the same variable for more than one scope.

- Bound variables can be renamed to a fresh variable to accomplish this.

- Example: One of the x’s renamed to u:

\[
\forall x \ (p(x) \lor \exists u \ (q(u) \land r(u)) \lor s(x, y))
\]
Definition of Free and Bound Instances

- In a **term or atomic formula**, every instance of a variable is free.

- If φ is a formula, then any **free instances** of a variable x **become bound** in $\forall x \varphi$ and $\exists x \varphi$.

- The free instances of variables in φ and ψ remain free in $(\neg \varphi), (\varphi \lor \psi), (\varphi \land \psi)$, and $(\varphi \to \psi)$.

- The bound instances of variables in φ and ψ remain bound in $(\neg \varphi), (\varphi \lor \psi), (\varphi \land \psi)$, and $(\varphi \to \psi)$.
Substitutability Restriction

- We are going to need to be able to substitute terms for free variables in various formulas.

- While this is easy syntactically, there is a semantic restriction that must be observed:
 - In substituting a term for a variable within a formula, no variables within the term can become bound as a result of the substitution.

- If t is a term, v is a variable, and F is a formula, and the above restriction applies, we say that

 “t is free to replace v in F”

 (or more conventionally, “t is free for v in F”)

Non-Substitutability Example

∀x (p(g(x, y)) ∨ q(x))

f(x) is **not** free to replace y in ∀x (p(g(x, y)) ∨ q(x))
Non-Substitutability Example

\[\forall x \ (p(g(x, f(x)))) \lor q(x) \]

bound (was free before substitution)
Substitution Notation

- If t is a term, v is a variable, and F is a formula, and t is free to replace v in F

 then by

 $F[t/v]$

 we mean the result of substituting t for every free occurrence of v in F. (We leave the bound occurrences of v as they were.)

 This notation and substitution itself are to be used only when the substitutability restriction applies.

 Note: [/] is meta-syntax; these symbols do not appear in the resulting formula.
Substitution Notation Example

Let F be the formula

$$\forall x (p(g(x, y)) \lor q(x))$$

Let v be the variable y.

Let t be the term $f(z)$.

$f(z)$ is free to replace y in F.

$F[f(z)/y]$ is $\forall x (p(g(x, f(z))) \lor q(x))$.
Substitution Notation Example

Let F be the formula

$$\forall x \ (p(g(x, y)) \lor q(x))$$

Let v be the variable x.

Let t be the term $f(y)$.

$f(x)$ is free to replace x in F (vacuously) because there are no free instances of x.

$F[f(x)/x]$ is the same as F; there are no free instances of x in F.
Syntax vs. Semantics

- Predicate logic proofs, in a system such as natural deduction, focus on **syntax**: each formula in the derivation is **mechanically-checkable** to be derivable from earlier formulas using only the given rules.

- The **semantics** or **meaning** of a formula is determined by separate considerations. Each formula is making a statement about some kind of **underlying structure**.
Why Separate Syntax from Semantics?

- Reasoning about semantics is often very complex.

- Reasoning syntactically allows reasoning without revisiting semantic details at every step.
Natural Deduction Rules for Predicate Logic
Natural Deduction Rules

- We need introduction and elimination rules for both:
 - \forall
 - \exists
- These will be added to our propositional natural deduction rules.
∀-Elimination Rule ∀E

- \[\frac{∀x \, \varphi}{∀E \, \varphi[t/x]} \]

where t is any term that is free to replace x in \(\varphi \).

- **What the rule says:**

 If we have derived a universally-quantified formula \(\varphi \),
 then the formula \(\varphi \) with any (appropriately-qualified) **specific instance** of x substituted for x is also derivable.
Why the Substitution Qualification is Necessary

- \[\forall x \varphi \quad \forall E \quad \varphi[t/x] \]

where \(t \) is any term that is free to replace \(x \) in \(\varphi \).

- Correct example: \(z \) is free to replace \(x \) in \(\exists y \, p(y, x) \)
 1. \(\forall x \, \exists y \, p(y, x) \) \hspace{1cm} \text{Premise}
 2. \(\exists y \, p(y, z) \) \hspace{1cm} \forall E \, 1 \quad \text{(substituting \(z \) for \(x \))}

- Incorrect example: \(y \) is not free to replace \(x \) in \(\exists y \, p(y, x) \)
 1. \(\forall x \, \exists y \, p(y, x) \) \hspace{1cm} \text{Premise}
 2. \(\exists y \, p(y, y) \) \hspace{1cm} \forall E \, 1 \quad \text{(substituting \(y \) for \(x \))}

- For instance, \(p \) could be \(> \) in the domain of natural numbers.
∀-Introduction Rule (∀I)

- This rule uses a sub-derivation, with **no formula assumed**, but with a **fresh variable** introduced.

\[
\begin{array}{c}
\text{Fresh } x_0 \\
\vdots \\
\vdots \\
\varphi[x_0/x] \\
\forall x \varphi
\end{array}
\]

- \(x_0\) is a “fresh” variable otherwise unused in the proof.

- \(x_0\) must naturally be free to replace \(x\) in \(\varphi\), but since \(x_0\) is “fresh”, this should never be an issue; It can’t become bound.
∀-Introduction Rule

• What this rule says:

 • If we have argued to derive a term \(\varphi[x_0/x] \) where \(x_0 \) represents a totally arbitrary value of \(x \), then we are justified in concluding \(\forall x \varphi \).

 • The key is the word “arbitrary”; there can be no constraints attached to \(x_0 \).

 • Note: Once the conclusion \(\forall x \varphi \) is drawn, \(x_0 \) is discharged and cannot be further used outside the box.
Work backward to use $\forall I$

- Unless your goal is proving something of the form $\forall x \ldots$ you won’t know to open a box with a fresh variable.
∀E ∀I Example

• Derive $\forall x \ p(x) \vdash \forall y \ p(y)$:

 $\forall x \ p(x)$ \hspace{2cm} \text{Premise}

 $\forall y \ p(y)$ \hspace{2cm} \text{Desired conclusion}

Work backward
∀E ∀I Example

- Derive $\forall x \ p(x) \vdash \forall y \ p(y)$:

1. $\forall x \ p(x)$ \hspace{2cm} Premise
2. y_0 \hspace{1cm} Fresh var
3. $p(y_0)$
4. $\forall y \ p(y)$ \hspace{1cm} ∀I
∀E ∀I Example

- Derive $\forall x \ p(x) \vdash \forall y \ p(y)$:

1. $\forall x \ p(x)$ \hspace{2cm} Premise
2. y_0 \hspace{2cm} Fresh var
3. $p(y_0)$ \hspace{2cm} 1, ∀E
4. $\forall y \ p(y)$ \hspace{2cm} 2-3, ∀I
∀E ∀I Example

- Derive ∀x (p(x) → q(x)), ∀x p(x) |→ ∀x q(x) :

1. ∀x (p(x) → q(x)) Premise
2. ∀x p(x) Premise
3. x₀ Fresh var
4.
5. q(x₀)
6. ∀x q(x) ∀I
∀E ∀I Example

- Derive $\forall x (p(x) \rightarrow q(x))$, $\forall x p(x) \vdash \forall x q(x)$:

1. $\forall x (p(x) \rightarrow q(x))$ Premise
2. $\forall x p(x)$ Premise
3. x_0 Fresh var
4. $p(x_0) \rightarrow q(x_0)$ 1, ∀E
5. $p(x_0)$ 2, ∀E
6. $q(x_0)$ 4, 5 →E
7. $\forall x q(x)$ 3-6, ∀I
∀E ∀I English Equivalent

• Derive ∀x (p(x) → q(x)), ∀x p(x) |− ∀x q(x) :

• “Assume ∀x (p(x) → q(x)) and ∀x p(x).

Let x₀ be an arbitrary element. [open a box]

From the first assumption p(x₀) → q(x₀), and from the second p(x₀), hence also q(x₀) by modus ponens.

Since x₀ was chosen arbitrarily, q(x₀) gives us ∀x q(x).” [close box]
∀E ∀I Example

- Derive ∀x ∀y \(p(x, y) \) \(\vdash \) ∀y ∀x \(p(x, y) \):
 - ∀x ∀y \(p(x, y) \) Premise
 - ∀y ∀x \(p(x, y) \)

Where ∀I is to be used, work backward.
∀E ∀I Example

- Derive $\forall x \forall y \ p(x, y) \vdash \forall y \forall x \ p(x, y) :$

<table>
<thead>
<tr>
<th>Step</th>
<th>Expression</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\forall x \forall y \ p(x, y)$</td>
<td>Premise</td>
</tr>
<tr>
<td>2.</td>
<td>y_0</td>
<td>Fresh</td>
</tr>
<tr>
<td>3.</td>
<td>x_0</td>
<td>Fresh</td>
</tr>
<tr>
<td>4.</td>
<td>$\forall y \ p(x_0, y)$</td>
<td>1, ∀E</td>
</tr>
<tr>
<td>5.</td>
<td>$p(x_0, y_0)$</td>
<td>4, ∀E</td>
</tr>
<tr>
<td>6.</td>
<td>$\forall x \ p(x, y_0)$</td>
<td>3-5, ∀I</td>
</tr>
<tr>
<td>7.</td>
<td>$\forall y \forall x \ p(x, y)$</td>
<td>2-6, ∀I</td>
</tr>
</tbody>
</table>
∃-Introduction Rule (∃I)

• $\varphi[t/x] \quad (∃I)_-$
 $\exists x \varphi$

where t is any term that is free to replace x in φ.

• **What the rule says:**

 If we have exhibited a formula φ in which variable x is replaced by a **specific instance** t (a term) *then* we can conclude that there is an x for which the formula is true.
∃-Introduction Rule (∃I)

- $\varphi[t/x] \quad \exists x \varphi$

where t is any term that is free to replace x in φ.

- In essence, this rule loses information, by replacing knowledge of a specific x for which is true with the statement that there is some such x.

- It is analogous to rule \lor-Introduction.
Why lose information?

- For one thing, the specific term derived might not be “exportable”;

 it could depend on some fresh variable introduced inside the box.
∀E ∃I Example

- Assume there is a constant a.
- Derive $\forall x \ p(x) \vdash \exists x \ p(x)$:

1. $\forall x \ p(x)$ Premise
2. $p(a)$ 1, ∀E
3. $\exists x \ p(x)$ 2, ∃I
The previous example is rare.

• As with \lor Introduction,

\exists Introduction is almost never the last line of a proof when the premise and conclusion are equivalent.
Slight Controversy

- What if there are no constants.
- Derive $\forall x \ p(x) \vdash \exists x \ p(x)$:

1. $\forall x \ p(x)$ \hspace{1em} Premise
2. $p(x)$ \hspace{1em} 1, $\forall E$
3. $\exists x \ p(x)$ \hspace{1em} 2, $\exists I$

Note: x is free to replace x in $p(x)$, since nothing is bound in $p(x)$.

The legitimacy of step 2 is questionable. It amounts to assuming that there is at least one thing in the domain, i.e. a non-empty domain.

Most treatments assume this, but not all. For example, Richard Bornat, the author of JAPE does not. (Allowing empty domains is analogous to allowing 0 as a number.)
JAPE Examples

Not JAPE-Provable
(no assumption that something exists)

1: ∀x. R(x) premise
 ...
2: ∃y. R(y)

JAPE-Provable
(actual a means something exists)

1: actual j, ∀x. R(x) premises
 ...
2: ∃y. R(y)
JAPE Examples

This is listed in Invalid Conjectures.

JAPE Proof

1: \(\forall x. R(x)\) premise
2: \(\exists y. R(y)\)
∃-Elimination Rule (∃E)

\[\exists x \varphi \quad \varphi[x_0/x] \]

- Here \(x_0 \) is a “fresh” variable otherwise unused in the proof.

- \(x_0 \) must be free to replace \(x \) in \(\varphi \), but since \(x_0 \) is “fresh”, this should never be an issue.

- This rule is analogous to \(\lor \) Elimination.
∃-Elimination Rule (∃x E)

- What this rule says:
- Assume that we have derived ∃x ϕ. One use we can make of this fact is to let x₀ be an x such that ϕ[x₀/x]. There can be no other constraints on x₀. If we then derive χ from the assumption about ϕ, then we can conclude χ in general.
∃I ∃E Example

- Derive $\forall x \ (p(x) \rightarrow q(x))$, $\exists x \ p(x) \vdash \exists x \ q(x)$:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\forall x \ (p(x) \rightarrow q(x))$</td>
<td>Premise</td>
</tr>
<tr>
<td>2</td>
<td>$\exists x \ p(x)$</td>
<td>Premise</td>
</tr>
<tr>
<td>3</td>
<td>x_0</td>
<td>Fresh var, Assumption</td>
</tr>
<tr>
<td>4</td>
<td>$p(x_0)$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$p(x_0) \rightarrow q(x_0)$</td>
<td>1, $\forall E$</td>
</tr>
<tr>
<td>6</td>
<td>$q(x_0)$</td>
<td>3, 4, $\rightarrow e$</td>
</tr>
<tr>
<td>7</td>
<td>$(\exists x) \ q(x)$</td>
<td>5, $\exists I$</td>
</tr>
<tr>
<td>8</td>
<td>$(\exists x) \ q(x)$</td>
<td>2, 3-6, $\exists E$</td>
</tr>
</tbody>
</table>

- In the $\exists E$ rule, φ is identified with $p(x)$, while χ is identified with $\exists x \ q(x)$.

- Try not to be confused by the fact that \exists is in the conclusion. The \exists in 2 is what was eliminated.
∃I ∃E Example in English

- Derive $\forall x \ (p(x) \rightarrow q(x))$, $\exists x \ p(x) \vdash \exists x \ q(x)$:

- “Assume $\forall x \ (p(x) \rightarrow q(x))$ and $\exists x \ p(x)$.

 Let x_0 be such that $p(x_0)$.

 By the first assumption, $p(x_0) \rightarrow q(x_0)$.
 Hence $q(x_0)$ by modus ponens.

 As we’ve exhibited an x such that $q(x)$, conclude $\exists x \ q(x)$.”
\[\exists I \quad \exists E \quad \textbf{Incorrect} \quad \text{Proof Example} \]

- Derive \(\forall x \ (p(x) \rightarrow q(x)) \), \(\exists x \ p(x) \models \exists x \ q(x) \):

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\forall x \ (p(x) \rightarrow q(x)))</td>
<td>Premise</td>
</tr>
<tr>
<td>2.</td>
<td>(\exists x \ p(x))</td>
<td>Premise</td>
</tr>
<tr>
<td>3.</td>
<td>(x_0) (p(x_0))</td>
<td>(\exists E)</td>
</tr>
<tr>
<td>4.</td>
<td>(p(x_0) \rightarrow q(x_0))</td>
<td>1, (\forall E)</td>
</tr>
<tr>
<td>5.</td>
<td>(q(x_0))</td>
<td>3, 4, (\rightarrow E)</td>
</tr>
<tr>
<td>6.</td>
<td>(q(x_0))</td>
<td>3-5, (\exists E)</td>
</tr>
<tr>
<td>7.</td>
<td>((\exists x) \ q(x))</td>
<td>6, (\exists I)</td>
</tr>
</tbody>
</table>

- Why incorrect?
- Formulas containing \(x_0 \) cannot be carried outside the box.
- The box for \(\exists E \) has two purposes:
 - Restricting the scope of the introduced variable.
 - Restricting the scope of the assumption.
Caution: $\exists E$

- Normally, $\exists E$ can only be used to introduce a variable once. You cannot use it to introduce a second distinct variable.

- In other words, $\exists x \phi$ says that an x exists, but not necessarily more than one.

- In contrast, you can use $\exists I$ as many times as you want (not that it will always help).
Quantifier rule summary

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>\forall</td>
<td>\forall x_0 [t/x]</td>
<td>$\forall x \varphi$ $\varphi[t/x]$</td>
</tr>
<tr>
<td></td>
<td>$\varphi[x_0/x]$</td>
<td>$\forall x \varphi$ $\forall E$</td>
</tr>
<tr>
<td></td>
<td>$\forall x \varphi$</td>
<td>(t is free to replace x)</td>
</tr>
<tr>
<td>\exists</td>
<td>$\exists x_0$ [t/x]</td>
<td>$\exists x \varphi$ $\varphi[x_0/x]$</td>
</tr>
<tr>
<td></td>
<td>$\exists x \varphi$</td>
<td>$\exists E$</td>
</tr>
<tr>
<td></td>
<td>(t is free to replace x)</td>
<td>χ</td>
</tr>
</tbody>
</table>

Fresh x_0
Interpretations of Formulas

• The structure(s) of interest in specific derivations are generally not totally specified in the system of derivation itself.

• Instead, we rely on certain formulas (“axioms”) to characterize the properties of these structures that are of interest. In natural deduction, these formulas will appear on the left-hand side of a sequent.

• It can then be proved separately that the syntactic rules are in agreement with the semantics of the intended interpretation.
Interpretation $I = (\Delta, \mu)$

- An interpretation for a set of terms and formulas consists of:
 - A (usually non-empty) domain Δ: that contains all individuals of interest.
 - For each constant symbol c in the language, an element $\mu(c) \in \Delta$.
 - For each n-ary function symbol f, a function $\mu(f): \Delta^n \to \Delta$.
 - For each n-ary predicate symbol p, a function $\mu(p): \Delta^n \to \{T, F\}$.
- The values of μ are the values assigned by the interpretation.
- The domain, Δ, may also be called the “universe” or “domain of discourse”.
- Non-empty domain is required if there are function symbols.
Constant Symbols for a Domain

• In what follows, we will assume that there is a unique constant symbol for each domain element.

• The symbol will be the same as the element itself.

• Example: If $\Delta = \{1, 2, 3\}$, we will assume constant symbols 1, 2, 3.

• This is only for sake of exposition. The symbols do not form a permanent part of the language.
Truth of a Formula Relative to an Interpretation \(I = (\Delta, \mu) \)

- If a formula has **free variables**, add a \(\forall \) quantifier for each such variable in front of the formula. (Free variables are understood to mean \(\forall \)-quantified by convention.)

- The result is called the “**closure**” of the formula.

- Now proceed **assuming the formula has no free variables**, i.e. the formula is **closed**.

- This method will break down the formula recursively.
Truth of a Formula Relative to an Interpretation $I = (\Delta, \mu)$

- For any closed formula φ, we will define the truth value $I[\varphi] \in \{T, F\}$.

- Brackets $[\]$ are used to emphasize that what is inside them is syntactic.
Truth of a Formula
Relative to an Interpretation $I = (\Delta, \mu)$

- If the formula is of the form $\forall x \varphi$, then
 $$I[\forall x \varphi] = T \text{ iff } I[\varphi[d/x]] = T \text{ for every } d \in \Delta.$$

- Recalling that we are using d as constant symbol in the case of substitution.
Truth of a Formula
Relative to an Interpretation $I = (\Delta, \mu)$

- If the formula is of the form $\exists x \varphi$, then
 \[
 I[\exists x \varphi] = T \text{ iff } I[\varphi[d/x]] = T \text{ for some } d \in \Delta.
 \]
Truth of a Formula
Relative to an Interpretation $I = (\Delta, \mu)$

- (Recall there are no free variables.)

- $I[\varphi \lor \psi] = T$ iff $I[\varphi] = T$ or $I[\psi] = T$.
Truth of a Formula
Relative to an Interpretation $I = (\Delta, \mu)$

- $I[\varphi \leftrightarrow \psi] = T$ iff $I[\varphi] = I[\psi]$.

- $I[\neg \varphi] = T$ iff $I[\varphi] = F$.

- If the formula φ is **atomic**, then $I[\varphi]$ is determined according to the following slides.
The **value of terms** under an interpretation

• An interpretation $I = (\Delta, \mu)$ determines a value $I[t] \in \Delta$ of each **term** t recursively:

 • If t is a **constant symbol** c, then $I[t] = \mu(c)$, the assigned value in Δ.

 • If t is a **function symbol** applied to terms, $f(t_1, t_2, \ldots, t_n)$ where the t_i are terms, then

 \[
 I[t] = \mu(f)(I[t_1], I[t_2], \ldots I[t_n])
 \]

 recalling that $\mu(f)$ is the **function** that interpretation I assigns the function symbol f.
The value of **atomic formulas** under an interpretation

- An interpretation \(I = (\Delta, \mu) \) determines a value \(I[E] \in \{T, F\} \) of each atomic formula \(E \) **recursively**:

 - If \(E \) is an **atomic formula** \(p(t_1, t_2, \ldots, t_n) \), where \(p \) is an \(n \)-ary predicate symbol, and the \(t_i \) are terms, then

 \[
 I[E] = \mu(p)(I[t_1], I[t_2], \ldots I[t_n]) \in \{T, F\}
 \]

 where \(\mu(p) \) is the **predicate** \(I \) assigns to \(p \).

 [using the **value of terms** definition presented previously]
Example

- Atomic Formula is: \(q(f(f(c)), c) \), where \(q \) is a predicate symbol, \(f \) is a function symbol, and \(c \) is a constant.

- \textbf{Suppose} interpretation \(I \) assigns
 - \(\Delta = \{0, 1, 2\} \) domain
 - \(\mu(c) = 0 \) constant
 - \(\mu(f) = \{0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 0\} \) function
 - \(\mu(q) = \{(2, 0), (1, 2), (0, 1)\} \) predicate
 the set of pairs for which \(\mu(q) \) is \(T \)

- Thus:
 - \(I[f(f(c))] = \mu(f)(I[f(c)]) = \mu(f)(\mu(f)(I[c])) = \mu(f)(\mu(f)(\mu(c))) = 2 \)
 - \(I(q(f(f(c)), c)) = \mu(q)(I[f(f(c)], \mu(c)) = \mu(q)(2, 0) = T \)
Example

- Atomic Formula is: $q(f(f(c)), f(c))$, where q is a predicate symbol, f is a function symbol, and c is a constant.

- Suppose interpretation I assigns
 - $\Delta = \{0, 1, 2\}$ domain
 - $\mu(c) = 0$ constant
 - $\mu(f) = \{0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 0\}$ function
 - $\mu(q) = \{(2, 0), (1, 2), (0, 1)\}$ predicate
 - the set of pairs for which $\mu(q)$ is T

- Thus:
 - $\mu(f(f(c))) = \mu(f(\mu(f)(I[c]))) = \mu(f(\mu(f)(\mu(c)))) = 2$
 - $\mu(q(f(f(c)), f(c))) = \mu(q)(\mu(f(f(c))), \mu(f(c))) = \mu(q)(2, 1) = F$
Example

- Formula is: $\exists x \ q(f(f(c)), f(x))$, where q is a predicate symbol, f is a function symbol, and c is a constant.

- Suppose interpretation I assigns
 - $\Delta = \{0, 1, 2\}$ domain
 - $\mu(c) = 0$ constant
 - $\mu(f) = \{0 \to 1, 1 \to 2, 2 \to 0\}$ function
 - $\mu(q) = \{(2, 0), (1, 2), (0, 1)\}$ predicate
 - the set of pairs for which $\mu(q)$ is T

- According to our rules $I[\exists x \ q(f(f(c)), f(x))] = T$ iff one of these is true:
 - $I[q(f(f(c)), f(0))]$ which is the same as $I[q(2, 1)]$
 - $I[q(f(f(c)), f(1))]$ which is the same as $I[q(2, 2)]$
 - $I[q(f(f(c)), f(2))]$ which is the same as $I[q(2, 0)]$

- As $q(2, 0) \in \mu(q)$, $I[\exists x \ q(f(f(c)), f(x))] = T$.
Empty Domains

- Customarily domains are required to be non-empty.

- Certain entailments that would be true under non-empty domains become false if the domain is empty.

- For example,
 \[\forall x \ P(x) \models \exists x \ P(x) \]
 The premise is *vacuously* true for an empty-domain, but the conclusion cannot be true.
A Prolog Programming for Evaluating I[] when the domain is finite

• See truth.pro on the website.
Satisfaction and Models

• An interpretation I satisfies a formula E iff $I[E] = T$.

• We also say that I is a model for E when $I[E] = T$.

• Caution: Some authors, such as Huth & Ryan, use “model” to mean “interpretation”.

• A formula is satisfiable iff there is an interpretation that satisfies it, otherwise it is unsatisfiable.
Formalizing Semantic Entailment $|=\$

- When $\varphi_1, \ldots, \varphi_n, \psi$ are predicate calculus formulas,

 $\varphi_1, \ldots, \varphi_n |\!|= \psi$

 means:

 Every interpretation I that satisfies each of the formulas $\varphi_1, \ldots, \varphi_n$

 also satisfies ψ.

- $\Gamma |\!|= \psi$, where Γ is a set of formulas, can be restated, by extending model

 to mean an interpretation satisfies the entire set Γ, as:

 Every model for Γ is also a model for ψ.
Validity

• When the left-hand side is empty:

\[\models \psi \]

we say that is **universally valid**, or just plain **valid**.

• In this case, every interpretation for \(\psi \) is a model.

• Validity in predicate calculus is analogous to tautology in propositional calculus.
|= in predicate calculus vs. propositional

• The predicate version of |= ψ is a very broad statement:
 • The domain of an interpretation can be infinite.
 • The set of applicable interpretation is generally infinite.

• Intuitively there is much less likely to be an algorithm to check whether |= ψ for predicate calculus in the way there is for the propositional calculus.
Soundness and Completeness

- As with propositional logic, we define:

 - **Soundness** of a set of derivation rules:

 For any set of formulas Γ and any formula ψ:

 $$\Gamma \vdash \psi \text{ implies } \Gamma \models \psi$$

 - **Completeness** of a set of derivation rules:

 For any set of formulas Γ and any formula ψ:

 $$\Gamma \models \psi \text{ implies } \Gamma \vdash \psi$$

- It can be shown that our natural deduction framework has **both** of these properties [cf. van Dalen, *Logic and Structure*]
Examples of Valid and Invalid Formulas
Invalid Formulas Valid Under Specific Interpretations
Showing a Formula Invalid

• Find a **counterexample**: an interpretation under which the formula is not valid.

• Example: \(\forall x \ (A(x) \rightarrow B(x)) \rightarrow (\exists x \ A(x) \rightarrow \forall x \ B(x)) \)

• Interpretation:
 - \(\Delta = \{1, 2\} \)
 - \(\mu(A) = \{2\} \)
 - \(\mu(B) = \{2\} \)
Predicate Calculus “with Equality”

• There is one exception to the “all interpretations” definitions of validity when the = predicate symbol is being used:

 Equality is always interpreted as identity.
ND Equality Rules

- Natural Deduction typically introduces rules for equality (from which the axioms can be derived).
 - \[t = t \quad =I \] where \(t \) is any term

- \[
\begin{array}{c}
 s = t \\
 \varphi[s/x] = \varphi[t/x]
\end{array}
\]

 where \(s \) and \(t \) are any terms and \(x \) is any variable, provided \(s \) and \(t \) are free to replace \(x \) in \(\varphi \).
Equality Formulas ("Axioms" in some systems)
(Derivable from ND Rules)

- Four types of formulas characterize equality:

 - \(\forall x \ (x = x) \) reflexive
 - \(\forall x \ \forall y \ (x = y \rightarrow y = x) \) symmetric
 - \(\forall x \ \forall y \ \forall z \ ((x = y \land y = z) \rightarrow (x = z)) \) transitive
 - \(\forall x_1 \ldots \forall x_n \ \forall y_1 \ldots \forall y_n \)
 \((x_1 = y_1 \land \ldots \land x_n = y_n) \rightarrow (f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))\) substitution
 where f is any n-ary function symbol
 - \(\forall x_1 \ldots \forall x_n \ \forall y_1 \ldots \forall y_n \)
 \((x_1 = y_1 \land \ldots \land x_n = y_n) \rightarrow (p(x_1, \ldots, x_n) \rightarrow p(y_1, \ldots, y_n))\) substitution
 where p is any n-ary predicate symbol
Example

- Prove the symmetry rule:

 \[u = v \quad |\quad v = u \]

 where \(u \) and \(v \) are any terms, from the two ND equality rules.
 The “trick” here is finding the right \(\varphi \).
 We use \(x = u \) for \(\varphi \), so that \(\varphi[u/x] \) is \(u=u \), an instance of \(=I \).
 This gives \(\varphi[v/x] \) as \(v=u \), the desired conclusion.

1. \(u = v \) \quad Premise
2. \(u = u \) \quad =I \quad (identified as \(\varphi[u/x] \))
3. \(v = u \) \quad 1, 2, =E \quad (identified as \(\varphi[v/x] \))
Example

- Prove the transitivity rule:
 \[u = v, \quad v = w \quad |\quad u = w \]
 where \(u, v, \) and \(w \) are terms, from the two ND equality rules.
 Here we let \(\varphi \) be \(u = x \), to use \(=E \).
 We identify \(s = t \) in the rule with \(v = w \).

1. \(v = w \) Premise
2. \(u = v \) Premise (identified as \(\varphi[v/x] \))
3. \(u = w \) 1, 2, \(=E \) (identified as \(\varphi[w/x] \))
JAPE Examples

- **∀ Elimination** (working **forward**) instantiates a ∀-quantified variable with a term that already exists (in this case, i).

- **Both** the term and the ∀ formula must be selected (using shift-click to add one or the other):

 ![Diagram](image)

 Note: If the red bracket opens downward, the item is usable as a hypothesis. If upward, a conclusion. In some cases both apply, and you need to click above or below to indicate which.
JAPE Examples

• ∀ Introduction (working backward), followed by ∀ Elimination (working forward)

1: ∀x.R(x) premise
2: actual i assumption
3: R(i) ∀ elim 1,2
4: ∀y.R(y) ∀ intro 2–3

• Note: JAPE will unify the above premise and conclusion, so a shorter proof, using the ‘hyp’ rule is, but this might be confusing because we end up with no y.

1: ∀x.R(x) premise
2: ∀y.R(y)

hyp
JAPE Examples

- ∀ Introduction (working backward) introduces a fresh variable. Variables are often helpful in completing a proof. Of course, the variable can’t be taken outside the box.

\[
\begin{align*}
2: \forall y. R(y) \\
\forall &
\end{align*}
\]

\[
\begin{align*}
2: \text{actual } i & \\
\ldots & \\
3: R(i) & \\
4: \forall y. R(y) & \forall \text{ intro 2-3}
\end{align*}
\]

\[i\] is meaningless out here
JAPE Examples

• **∃ Elimination** (working **forward**) introduces a fresh variable for a sub-proof.

• It *needs a goal, in order to introduce the goal for the sub-proof* (inside the box). You may need to identify the goal if not obvious.

• In this example, the goal is implicit, and the proof is completed in one step.

```
1: ∃x.R(x) premise
...  
2: ∃y.R(y)
```

Note: As before, JAPE will also *unify* the above premise and conclusion in a single step, making a proof unnecessary.
JAPE Examples

- **∃ Introduction** (working **backward**) needs a term that it can use as an instantiation for the ∃ variable.
- The **JAPE ND theory doesn’t have functions yet, so all such terms will be variables.**
- The variable must be selected by the user.
- We can’t use ∃I here, because there is no variable available.

```
1: ∃x.R(x) premise
   ...
2: [∃y.R(y)]
   no variable
```

- Here is an example with a variable that **can** be used (but leads to a dead end):

```
2: [actual i, ∃y.R(i,y)]
   assumptions
   ...
3: [∃y.∃x.R(x,y)]
```

∃I (with i for y)
Proof of a sequent using $\exists E$ and $\exists I$

Work forward to introduce variables, by **eliminating** \exists’s (opening boxes):

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\exists x. \exists y. R(x,y)$ premise</td>
</tr>
<tr>
<td></td>
<td>$\exists E$</td>
</tr>
<tr>
<td>2</td>
<td>$\exists x. \exists y. R(x,y)$ premise</td>
</tr>
<tr>
<td></td>
<td>$\exists E$</td>
</tr>
<tr>
<td></td>
<td>actual i, $\exists y. R(i,y)$ assumptions</td>
</tr>
<tr>
<td>3</td>
<td>$\exists y. \exists x. R(x,y)$</td>
</tr>
<tr>
<td></td>
<td>$\exists I$</td>
</tr>
<tr>
<td>4</td>
<td>$\exists y. \exists x. R(x,y)$</td>
</tr>
<tr>
<td></td>
<td>$\exists I$</td>
</tr>
<tr>
<td></td>
<td>\exists elim 1,2–3</td>
</tr>
</tbody>
</table>

(Note the conclusions inside $=$ the conclusion outside.)

then introduce \exists’s working backward **in the right order**:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\exists x. \exists y. R(x,y)$ premise</td>
</tr>
<tr>
<td>2</td>
<td>actual i, $\exists y. R(i,y)$ assumptions</td>
</tr>
<tr>
<td>3</td>
<td>actual i1, $R(i1,i1)$ assumptions</td>
</tr>
<tr>
<td></td>
<td>identify y & i1</td>
</tr>
<tr>
<td>4</td>
<td>$\exists y. \exists x. R(x,y)$</td>
</tr>
<tr>
<td></td>
<td>$\exists I$</td>
</tr>
<tr>
<td></td>
<td>\exists elim 2,2,3–4</td>
</tr>
<tr>
<td>5</td>
<td>$\exists y. \exists x. R(x,y)$</td>
</tr>
<tr>
<td></td>
<td>$\exists I$</td>
</tr>
<tr>
<td></td>
<td>\exists elim 1,2–5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\exists x. \exists y. R(x,y)$ premise</td>
</tr>
<tr>
<td>2</td>
<td>actual i, $\exists y. R(i,y)$ assumptions</td>
</tr>
<tr>
<td>3</td>
<td>actual i1, $R(i1,i1)$ assumptions</td>
</tr>
<tr>
<td></td>
<td>identify x & i</td>
</tr>
<tr>
<td>4</td>
<td>$\exists x. R(x,i1)$</td>
</tr>
<tr>
<td></td>
<td>3 intro 3,2,1</td>
</tr>
<tr>
<td>5</td>
<td>$\exists y. \exists x. R(x,y)$</td>
</tr>
<tr>
<td></td>
<td>3 intro 4,3,1</td>
</tr>
<tr>
<td>6</td>
<td>$\exists y. \exists x. R(x,y)$</td>
</tr>
<tr>
<td></td>
<td>\exists elim 2,2,3–5</td>
</tr>
<tr>
<td>7</td>
<td>$\exists y. \exists x. R(x,y)$</td>
</tr>
<tr>
<td></td>
<td>\exists elim 1,2–6</td>
</tr>
</tbody>
</table>
Example using all four quantifier rules

1: \(\exists x. \forall y. R(x,y)\) premise
2: \(\forall y. \exists x. R(x,y)\)

1: \(\exists x. \forall y. R(x,y)\) premise
2: actual \(i\)
3: \(\exists x. R(x,i)\)
4: \(\forall y. \exists x. R(x,y)\) \(\forall\) intro 2–3

1: \(\exists x. \forall y. R(x,y)\) premise
2: actual \(i\)
3: \(\exists x. R(x,i)\)
4: \(\exists x. R(x,i)\) \(\exists\) elim 1,3–4
5: \(\exists x. R(x,i)\)
6: \(\forall y. \exists x. R(x,y)\) \(\forall\) intro 2–5

1: \(\exists x. \forall y. R(x,y)\)
2: actual \(i\)
3: \(\exists x. R(x,i)\)
4: \(\exists x. R(x,i)\) \(\exists\) elim 1,3–5
5: \(\exists x. R(x,i)\)
6: \(\forall y. \exists x. R(x,y)\) \(\forall\) intro 2–6
A Common Idiom in JAPE

- These steps are often done in sequence, but it is not always obvious when to use them:
 - contra (classical) = RAA
 - ¬ elimination (introduces skeletal formulas)
 - unify one of the skeletal formulas with an existing sub-formula
Sometimes the steps have to be taken in a round-about order, e.g. $\exists I$ won’t work forward (needs variable and body). This example uses the previous idiom.
JAPE

• The non-empty universe assumption is not assumed in JAPE!!
• If you need this, you must introduce a premise that there is at least one element. How to do this is shown on the next slide.
• Proved in textbooks, but not provable in JAPE:
 1: $\forall x. R(x)$ premise
 ...
 2: $\exists x. R(x)$
• Can’t go backward, because $\exists I$ needs a term.
• Can’t go forward, because $\forall E$ needs a variable.
JAPE

- If you **need** the non-empty universe assumption, you must introduce a premise that **there is at least one element**, by including ‘actual i’, or ‘∃x.T’ as a premise. (one place where T is useful, but others could be used).

1: actual i, ∀x.R(x) premises
2: R(i) ∀ elim 1.2,1.1
3: ∃x.R(x) ∃ intro 2,1.1

- See Bornat’s book “Proof and Disproof ... “ for discussion on why this philosophy is better.
A Tricky One

1: actual j, actual k premises
 ...
2: \exists x. (R(x) \rightarrow R(j) \land R(k))
A Tricky One

1: actual j, actual k premises

...

2: $\exists x. (R(x) \rightarrow R(j) \land R(k))$

Note: This does not say that j and k are distinct. They could be two names for the same individual.

unify R(j) with _E

LEM to the rescue (used as a lemma)

What x would make this work?

What x would make this work?

1: actual j, actual k premises

1: actual j, actual k premises

2: _E \lor \neg _E Theorem E \lor \neg E

...

3: $\exists x. (R(x) \rightarrow R(j) \land R(k))$

1: actual j, actual k premises

2: R(j) \lor \neg R(j) Theorem E \lor \neg E

...

3: $\exists x. (R(x) \rightarrow R(j) \land R(k))$

1: actual j, actual k premises

1: actual j, actual k premises

2: R(j) \lor \neg R(j) Theorem E \lor \neg E

3: R(j)

...

4: $\exists x. (R(x) \rightarrow R(j) \land R(k))$

5: \neg R(j)

...

6: $\exists x. (R(x) \rightarrow R(j) \land R(k))$

7: $\exists x. (R(x) \rightarrow R(j) \land R(k))$ \lor elim 2,3–4,5–6
How to introduce LEM (it must be proved first)

Click to apply as lemma

Voila!
Continuing the tricky proof ...

For the Top Box

x = k (an actual) will enable $\exists I$
Continuing the tricky proof ...

For the Bottom Box

\(x = j \) (an actual) will enable \(\exists I \) (using contra)
Completed Proof

1: actual j, actual k
2: R(j) ∨ ¬R(j)
3: R(j)
4: R(k)
5: R(j) ∧ R(k)
6: R(k) → R(j) ∧ R(k)
7: ∃x. (R(x) → R(j) ∧ R(k))
8: ¬R(j)
9: R(j)
10: ⊥
11: R(j) ∧ R(k)
12: R(j) → R(j) ∧ R(k)
13: ∃x. (R(x) → R(j) ∧ R(k))
14: ∃x. (R(x) → R(j) ∧ R(k))

premises
Theorem E v ¬E
assumption
assumption
∧ intro 3,4
→ intro 4–5
∃ intro 6,1,2
assumption
assumption
→ elim 9,8
contra (constructive) 10
→ intro 9–11
∃ intro 12,1,1
∨ elim 2,3–7,8–13
An Analogous Sequent

1: actual i
 premise

2: \(\exists x. (R(x) \rightarrow \forall y. R(y)) \)

“If there is at least one person, then there is someone (x) such that if x is happy then everyone is happy.”
Key

• How to use the LEM to create a dichotomy?
 \[E \lor \neg E \]
• But what is E?
 1: \text{actual i} \quad \text{premise}
 \ldots
 2: \exists x.(R(x) \rightarrow \forall y.R(y))

• Possibilities for E:
 • \exists x.R(x)
 • \forall y.R(y)

• Use unification to assign formulat to E
A syllogism consists of three parts: the **major premise**, the **minor premise**, and the **conclusion**. In Aristotle, each of the premises is in the form "Some/all A belong to B," where "Some/All A" is one term and "belong to B" is another, but more modern logicians allow some variation. Each of the premises has one term in common with the conclusion: in a major premise, this is the major term (i.e., the predicate) of the conclusion; in a minor premise, it is the minor term (the subject) of the conclusion. For example:

- **Major premise**: All humans are mortal.
- **Minor premise**: Socrates is a human.
- **Conclusion**: Socrates is mortal.

Each of the three distinct terms represents a category, in this example, "human," "mortal," and "Socrates." "Mortal" is the major term; "Socrates," the minor term. The premises also have one term in common with each other, which is known as the **middle term** — in this example, "human."

Note: Being a syllogism does not require validity.
Proving a Syllogism Using Venn Diagram

- All fruit is nutritious.
- Some fruit is tasty.
- Therefore, some tasty things are nutritious.

\[\text{fruit} \quad \text{nutritious} \quad \text{tasty} \]

\(x \)

\(\sqrt{ } \)

\(x \) means excluded possibilities (fruit that is not nutritious)

\(\sqrt{ } \) means implied possibility non-empty category (tasty that is nutritious)
Codifying Syllogisms using Predicate Logic

- Use unary predicates.
 - \(S(x) \): “\(x \) is an \(S \)”, “\(x \) has an \(S \)”, “\(x \) belongs to \(S \)”, etc.

- Use quantifiers for some, all
 - \(\forall \), \(\exists \)

- Use connectives
 - \(\neg \), \(\rightarrow \)

- Use constant symbols for individuals
Translating a Syllogism

<table>
<thead>
<tr>
<th>Statement</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All humans are mortal.</td>
<td>$\forall x (H(x) \rightarrow M(x))$</td>
</tr>
<tr>
<td>Socrates is a human.</td>
<td>$H(s)$</td>
</tr>
<tr>
<td>Socrates is mortal.</td>
<td>$M(s)$</td>
</tr>
</tbody>
</table>

This syllogism happens to be valid.
Syllogistic Forms

<table>
<thead>
<tr>
<th>Statement Form</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All S is/are/has... P.</td>
<td>$\forall x \ (S(x) \rightarrow P(x))$</td>
</tr>
<tr>
<td>Some S is P.</td>
<td>$\exists x \ (S(x) \land P(x))$</td>
</tr>
<tr>
<td>No S is P.</td>
<td>$\neg \exists x \ (S(x) \land P(x))$</td>
</tr>
<tr>
<td>Some S is not P.</td>
<td>$\exists x \ (S(x) \land \neg P(x))$</td>
</tr>
<tr>
<td>No S is not P.</td>
<td>$\neg \exists x \ (S(x) \land \neg P(x))$</td>
</tr>
<tr>
<td>All S is not P.</td>
<td>$\forall x \ (S(x) \rightarrow \neg P(x))$</td>
</tr>
</tbody>
</table>

Are any forms equivalent to one another?
Example: Translate this syllogism, then try to prove it.

- All fruit is nutritious.
- Some fruit is tasty.
- Some tasty things are nutritious.
Example: Translate this syllogism, then try to prove it.

- No humans are perfect.
- All perfect creatures are mythical.
- Some mythical creatures are not human.
DeMorgan’s Rules for Quantifiers

- Recall DeMorgan’s rules for propositions
 - \((p \land q) \iff \lnot (\lnot p \lor \lnot q)\)
 - \((p \lor q) \iff \lnot (\lnot p \land \lnot q)\)

- For quantifiers, we have analogous rules
 - \(\forall x \ P(x) \iff \lnot (\exists x \ \lnot P(x))\)
 - \(\exists x \ \lnot P(x) \iff \lnot \forall x \ P(x)\)
 - \(\exists x \ P(x) \iff \lnot (\forall x \ \lnot P(x))\)
 - \(\lnot \exists x \ P(x) \iff \forall x \ \lnot P(x)\)

- Note that in some cases, only one direction of implication is constructive.
Constructive \rightarrow vs. Classical \leftarrow

1: $E \land F$ \hspace{1cm} 1: $\neg(\neg E \lor \neg F)$ premise
2: $\neg E \lor \neg F$ \hspace{1cm} 2: $\neg E$ assumption
3: $\neg E$ assumption
4: E \hspace{1cm} 3: $\neg E \lor \neg F$ \lor intro 2
5: \bot \hspace{1cm} 4: \bot \neg elim 3,1
6: $\neg F$ assumption
7: F \hspace{1cm} 5: E contra (classical) 2–4
8: \bot \hspace{1cm} 6: $\neg F$ assumption
9: \bot \hspace{1cm} 7: $\neg E \lor \neg F$ \lor intro 6
10: $\neg(\neg E \lor \neg F)$ \neg intro 2–9 \hspace{1cm} 8: \bot \neg elim 7,1
10: $E \land F$ \hspace{1cm} 9: F contra (classical) 6–8
10: $E \land F$ \land intro 5,9
Constructive \rightarrow vs. Classical \leftarrow

1: $\forall x. R(x)$
 premise

2: $\exists y. \neg R(y)$
 assumption

3: actual i, $\neg R(i)$
 assumptions

4: $R(i)$
 \forall elim 1,3.1

5: \bot
 \neg elim 4,3.2

6: \bot
 \exists elim 2,3–5

7: $\neg \exists y. \neg R(y)$
 \neg intro 2–6

1: $\neg \exists x. \neg R(x)$
 premise

2: actual i
 assumption

3: $\neg R(i)$
 assumption

4: $\exists x. \neg R(x)$
 \exists intro 3,2

5: \bot
 \neg elim 4,1

6: $R(i)$
 contra (classical) 3–5

7: $\forall y. R(y)$
 \forall intro 2–6
Note Rule Parallels
Note Rule Parallels

1: \(\neg(\neg E \lor \neg F) \) premise
2: \(\neg E \) assumption
3: \(\neg E \lor \neg F \) \lor\ intro 2
4: \(\bot \) \neg\ elim 3,1
5: \(E \) contra (classical) 2–4
6: \(\neg F \) assumption
7: \(\neg E \lor \neg F \) \lor\ intro 6
8: \(\bot \) \neg\ elim 7,1
9: \(F \) contra (classical) 6–8
10: \(E \land F \) \land\ intro 5,9

1: \(\neg \exists x. \neg R(x) \) premise
2: \(\text{actual i} \) assumption
3: \(\neg R(i) \) assumption
4: \(\exists x. \neg R(x) \) \exists\ intro 3,2
5: \(\bot \) \neg\ elim 4,1
6: \(R(i) \) contra (classical) 3–5
7: \(\forall y. R(y) \) \forall\ intro 2–6
Fun with Relations

• A 2-ary predicate represents a binary relation, i.e. a set of pairs of domain elements.

• Various properties of relations can be expressed using predicate logic formulas.

• In the following, what formula characterizes each relation represented by predicate L (sometimes using “loves” for analogy), and possibly the predicate =.
Everybody loves somebody.

∀x ∃y L(x, y)
Everybody is loved by somebody.
Somebody loves everybody.

“Pollyanna”
Nobody loves everybody.
Nobody loves somebody.
Everybody loves everybody.

“Commune”
Everybody loves exactly one.
Nobody loves exactly one.
Everybody loves him/herself.

“Reflexive”
Everybody loves him/herself and only him/herself.
L is symmetric.
If x loves y then y loves x.
L is transitive.
L is an equivalence relation

Reflexive, symmetric, transitive
\mathbf{L} is antisymmetric.
L is a partial order ("poset").
L is a linear (or total) order.
A proof

- Suppose everyone loves somebody, and loves is symmetric and transitive.
- Then loves is reflexive.
Informal Proof

• Assertion: If everyone loves somebody, and loves is symmetric and transitive, then loves is reflexive.

• Let x_0 be an arbitrary element, to show x_0 loves x_0.

• Since everyone loves someone, let y_0 be someone x_0 loves.

• By symmetry, y_0 loves x_0 too.

• By transitivity, since x_0 loves and y_0 loves x_0, x_0 loves x_0.
Caution

- Without the assumption: Everyone loves somebody
- the assertion that loves is reflexive does not hold.

- Show this by giving a counterexample.
How to do without function symbols

• Every n-ary function is an (n+1)-ary relation.
• For example, a binary function f can be represented by a 3-ary relation F.
• $F(x, y, z)$ means $f(x, y) = z$.
• Functionality induces some additional axioms for F:
 • $\forall x \ \forall y \ \exists z \ F(x, y, z)$
 • $\forall x \ \forall y \ \forall z \ \forall z' \ (F(x, y, z) \land F(x, y, z') \rightarrow z = z')$
• We’d still need axioms for equality.
Example: Group theory without function symbols (c is unit)

- $\forall x \forall y \exists z \ F(x, y, z)$
- $\forall x \forall y \forall z \forall z' (F(x, y, z) \land F(x, y, z') \rightarrow z = z')$
- $\forall x \forall y \forall z \exists v (F(x, y, v) \land F(v, z, w)) \rightarrow \exists u (F(y, z, u) \land F(x, u, w))$
- $\forall x \ F(x, c, x)$
- $\forall x \ F(c, x, x)$
- $\forall x \exists y \ F(x, y, c)$
- $+ \text{ Equality axioms}$