From PDAs to Turing Machines

April 11, 2011

CS 81: Computability and Logic
PRACTICAL PARSING

Recursive Descent

✓ Form of code follows the grammar.
✓ Efficient and correct for LL grammars.

Another very practical method: Shift-Reduce Parsing

✓ Efficient and correct for LR grammars
✓ Parser code is usually computer-generated!

But neither of these handle ALL CFGs…
CYK (CKY) Algorithm

✓ Works for any CFG.
✓ Parses inputs in $O(n^3)$ ($n =$ length of input)
✓ Requires a grammar in “Chomsky Normal Form”
✓ Key ideas:
 ▶ For every substring, what nonterminals produce it?
 ▶ Dynamic programming for efficiency
Dynamic Programming

Recursive expressions, such as

\[
\begin{align*}
f(n) & := 1 & \text{if } n < 3 \\
f(n) & := f(n - 1) + f(n - 3) & \text{otherwise}
\end{align*}
\]

are very clear, but inefficient if taken literally. Two roughly-equivalent solutions:

✓ Memoization: keep track of what \(f \) values have been computed
✓ Dynamic Programming: Compute all \(f \) values in a good order
CYK Algorithm

Let

\[x = x_1 x_2 \cdots x_n \]

be the string to be parsed.

Define

\[a(i, j) := \{ B \mid B \Rightarrow^* x_i x_{i+1} \cdots x_j \} \]

Then \(x \in L(G) \) iff \(S \in a(1, n) \)
CYK Algorithm

Let
\[x = x_1x_2 \cdots x_n \]
be the string to be parsed.

Define
\[a(i, j) := \{ B \mid B \Rightarrow^* x_i x_{i+1} \cdots x_j \} \]

Then \(x \in L(G) \) iff \(S \in a(1, n) \)

\[
\begin{align*}
 a(i, i) &= \{ C \mid C \to x_i \} \\
 a(i, k) &= \{ C \mid C \to AB \land A \in a(i, j) \land B \in a(j + 1, k) \}
\end{align*}
\]
Each entry is computed from entries in its same row and column, e.g. a(1, 4) from a(1,1) and a(2, 4), a(1, 2) and a(3, 4), a(1, 3) and a(4, 4).
CYK Example

Let’s parse
\(() () ()\) using the grammar

\[
\begin{align*}
S & \rightarrow LT \\
T & \rightarrow SR \\
S & \rightarrow LR \\
S & \rightarrow SS \\
L & \rightarrow (\\
R & \rightarrow)
\end{align*}
\]
Turing Machines
Turing Machines

- Named after (not by) Alan Turing
- Perhaps the most important computational model (if not the most practical)
- Simple, yet apparently universal
- Church-Turing Thesis (a.k.a. Church’s Thesis)
 - Any “intuitively computable” procedure can be performed by a TM
Official Definition

A Deterministic TM consists of

✓ A finite set Q of control states
✓ A finite alphabet Σ
✓ A finite “tape alphabet” Γ ($\Sigma \subset \Gamma$, $\square \in \Gamma \setminus \Sigma$)
✓ A starting state $q_0 \in Q$
✓ Accepting/Rejecting (halting) states $q_{\text{accept}}, q_{\text{reject}} \in Q$
✓ Transitions $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$
Running a Turing Machine

- Write the finite input at the start of an infinite blank tape
- Run the TM, beginning at the start of the tape

\[\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \]

- TM halts iff we enter states \(q_{\text{accept}} \) or \(q_{\text{reject}} \).
 - TM might never halt!
 - Sipser: also reject if you fall off the infinite tape
Beyond Decision Problems

Rather than accepting a language, we can use a TM to compute a function $f(x) = y$:

✓ The machine starts with some input x on the tape
✓ The machine halts (however) with some string y on the tape.
✓ If the machine diverges (does not halt) on some inputs, it computes a partial function.
TM Demo

http://ironphoenix.org/tril/tm/
CONFIGURATIONS

An instantaneous snapshot of a TM is called a configuration

✓ The “state” of the “whole machine”

✓ Contents?

✓ Why are configurations always finite?
TM and Languages

✓ A TM \textbf{accepts} a string if that input leads to \(q_{\text{accept}} \).
TMs and Languages

✓ A TM accepts a string if that input leads to q_{accept}.

✓ A language is recognizable (a.k.a. recursively enumerable) if there is a TM that accepts exactly these strings.
TM's and Languages

✓ A TM **accepts** a string if that input leads to q_{accept}.

✓ A language is **recognizable** (a.k.a. recursively enumerable) if there is a TM that accepts exactly these strings.

✓ A language is **decidable** (a.k.a. recursive) if it is accepted by a TM that always halts (i.e., the TM always ends up in q_{accept} or q_{reject}).
TMs and Languages

✓ A TM **accepts** a string if that input leads to q_{accept}.

✓ A language is **recognizable** (a.k.a. recursively enumerable) if there is a TM that accepts exactly these strings.

✓ A language is **decidable** (a.k.a. recursive) if it is accepted by a TM that always halts (i.e., the TM always ends up in q_{accept} or q_{reject}).

✓ Key result: there are languages that are accepted by some TM, but not decided by any TM.
Decidable vs. Recognizable

✓ If a language is decidable, then its complement is decidable. Why?
Decidable vs. Recognizable

✓ If a language is decidable, then its complement is decidable. Why?

✓ If a language is recognizable, and its complement is recognizable, then the language is decidable. Why?
TM Programming Tips

✓ Divide the work into different phases/subroutines
✓ Controller has an arbitrarily large “finite memory”.
✓ Squares can be “marked” and “unmarked” (finitely many ways)
✓ Take advantage of TM extensions
TM Variations

The following yield no extra power:

✓ Adding the option to write or not
✓ Adding the option to stay-in-place rather than moving L/R.
✓ Making the tape infinite in both directions
✓ Adding an extra "Erase Tape" move.
✓ Multiple tapes with multiple (independent) read/write heads
✓ 2-D infinite tape
✓ Nondeterminism (!)

Many attempts to define models of computation; all turn out to be equivalent to Turing Machines.

✓ If you can do it in C++, a TM can do it (slowly, encodedly)