Languages, Grammars and Parsing

Robert Keller
September 2012

What are These?

- **Language**: A set of strings.

- **Grammar**: A formal way to define a language.

- **Parser**: A program that determines whether or not a given string is in the language.
More Detail on Languages

- A language is a **set of strings** of symbols from a finite set called the **alphabet**.

- When we show languages, we usually don’t show the strings with quotes, as a convenience.

Example 1

The language of all U.S. zipcodes

{00501, ..., 91711, ..., 99950}

alphabet = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

This language is finite.
Example 10
The language of all binary numerals without unnecessary leading zeros
\{0, 1, 10, 11, 100, 101, 110, 111, \ldots\}
alphabet = \{0, 1\}
This language is infinite.

Example 11
- The language of all “2-adic” numerals
\{\varepsilon, 1, 2, 11, 12, 21, 22, 111, 112, 121, \ldots\}
\varepsilon\ stands\ for\ the\ \textbf{empty string}
alphabet = \{1, 2\}
This language is infinite.
Example Scrabble

The language of official Tournament Scrabble words =
{aa, aah, aahed, ..., zyzzyvas, zzz}

alphabet = {a, b, c, ..., z}
This language is finite.

Example WBP

• WBP = Well-Balanced Parenthesis Strings

• { (), (()), (()()), (((())), ((()())), (()())(), (()()())(), ... }

• alphabet = { (,) }

• This language is
Grammars

• A grammar is a **formal** (i.e. mechanical) way of defining a language.

• It is a special kind of **inductive definition**, something we’ve seen before (think S expressions).

• It can also be viewed as a **state-transition system**, also **déjà vu** (think Picobot).

• It is also a form of **rewriting system**, analogous to evaluating a function.

A Grammar Has 4 Parts

• An alphabet Σ, called the **terminal** alphabet.

• An alphabet N, called the **non-terminal** alphabet. N does not overlap with Σ.

• A finite set of **rules** (also called “productions”).

• A **start symbol**, always a member of N.
Rules

• A rule indicates how a non-terminal symbol within a string can be “rewritten”, i.e. be replaced by a string.

• Only non-terminal symbols can be rewritten.

• Suppose there is a rule:
 \[S \rightarrow (L) \]
 This is read “S rewrites as (L)”, or “S produces (L)”.

Non-Determinism

• We have choices.

• For a given symbol, we may have more than one rule with that symbol as the left-hand side, e.g.
 \[L \rightarrow A L \]
 \[L \rightarrow \epsilon \]
 where \(\epsilon \) is the empty string

• Grammars are easy if you follow the rules.
Grammar as State-Transitions

• A grammar defines a state-transition system.

• The **states** are strings from the combined alphabet $\Sigma \cup N$.

• The **transitions** between states are defined on the next page.

• The **initial state** is the start symbol, say S.

Transitions

One state, a string

...X...

containing a non-terminal X, can make a **transition** to another state,

...α...

where α is a string of symbols in $\Sigma \cup N$ exactly when there is a **rule**

$$X \rightarrow \alpha$$

(rule)

When this is possible, we write

...X... \Rightarrow ...α...

(transition)
Example

- Suppose the rules are

 \[
 S \rightarrow (L) \\
 L \rightarrow S L \\
 L \rightarrow \varepsilon
 \]

- Then here are some possible transitions

 \[
 (L) \Rightarrow (S L) \quad \text{using rule } L \rightarrow S L \\
 (L) \Rightarrow () \quad \text{using rule } L \rightarrow \varepsilon \\
 (S L) \Rightarrow (S S L) \quad \text{using rule } L \rightarrow S L \\
 (S L) \Rightarrow (S) \quad \text{using rule } L \rightarrow \varepsilon \\
 (S L) \Rightarrow ((L) L) \quad \text{using rule } S \rightarrow (L)
 \]

The Yield of a Grammar

- The **yield** of a grammar is the set of all states reachable from the start symbol by applying 0 or more rules in sequence.

- This can be done systematically by considering **each candidate rule** in turn for **each possible lefthand side symbol** in a state, beginning with the string consisting of just the start symbol.
Yield Example

- Consider the alphabets used previously, start symbol S, and rules

- The first part of the yield is

<table>
<thead>
<tr>
<th>step</th>
<th>string</th>
<th>from state</th>
<th>using rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>S</td>
<td>start symbol</td>
<td>N/A</td>
</tr>
<tr>
<td>1.</td>
<td>(L)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>()</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>(S L)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>(S)</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Quiz

- Add the next 4 lines to the yield table.

<table>
<thead>
<tr>
<th>step</th>
<th>string</th>
<th>from state</th>
<th>using rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>(S L)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>(S)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grammar to Language

- Given a grammar, the **language generated by** the grammar is subset of the yield containing only terminal symbols. We can construct the language by constructing the yield, collecting only the terminal strings as we go.

- The language generated by the previous grammar contains:
 - ()
 - (())
 - ((()))
 - (((())))
 - ((((()())))
 - (((((())))))
 - etc.

Parsing

- Parsing addresses the problem:

 Based on a grammar G:

 Given a string x, is x in the language generated by G, or not?

 $x \in L(G)$?

- There is an obvious algorithm for parsing (what?) but it is generally too slow for practical use.
Determinism in Parsing

- Although we described grammars as forming a generally non-deterministic system, we want parsing to be as deterministic as possible.

- Ideally the time taken is $O(n)$ where n is the length of the string x.

Parsing by Recursive Descent

- If the grammar is constructed the right way, there is an easy way to parse its language, using recursion.

- Illustrate with the previous grammar:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$S \rightarrow (L)$</td>
</tr>
<tr>
<td>2</td>
<td>$L \rightarrow \epsilon$</td>
</tr>
<tr>
<td>3</td>
<td>$L \rightarrow S \ L$</td>
</tr>
</tbody>
</table>
Parsing an Input String

• Given an input string, such as
 \(((())())\)
 we want to know “is this string in the language?”

In other words, is there a series of states of the form
 \(S \Rightarrow \ldots \Rightarrow \ldots \Rightarrow (())()())\)

[abbreviated \(S \Rightarrow^* (())()())\)]

To answer such questions, use the grammar to construct a set of parse functions.

Parse Functions

• There will be one parse function parse-X for each non-terminal X.

• For this grammar, we will have two functions:
 parse-S
 parse-L

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S (\rightarrow (L))</td>
</tr>
<tr>
<td>2</td>
<td>L (\rightarrow \varepsilon)</td>
</tr>
<tr>
<td>3</td>
<td>L (\rightarrow SL)</td>
</tr>
</tbody>
</table>
Parse Function Jobs

- On each call, a parse function has a string x as input.

- The string x will be a **suffix of the original** input that has not yet been parsed. (The original input is a suffix of itself.)

- The job of the parse function is to determine whether a **prefix** of x can be generated by the corresponding non-terminal.

Parsing Function Picture

- x OR x
 - $x = y z$
 - **Success**, $X \Rightarrow^* y$
 - Residue z
 - **Failure**, there is no prefix y of x such that $X \Rightarrow^* y$
 - Residue x
Parser Function Hunger

- There may be more than one y that works. Our convention is that the parse function will always **prefer the longest** such y.

```
  x  =  y    z
  parse-X  
  Success, x =>^+ y  
    Residue z

  x  =  y'    z'
  parse-X
  Success, x =>^+ y' 
    Residue z'
```

Parse Function Jobs

- Here x is any string.
- (parse-S x) determines whether a **prefix** of x can be generated from S.
- (parse-L x) determines whether a **prefix** of x can be generated from L.
- These functions will be mutually recursive.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S \rightarrow (L)</td>
</tr>
<tr>
<td>2</td>
<td>L \rightarrow \varepsilon</td>
</tr>
<tr>
<td>3</td>
<td>L \rightarrow S L</td>
</tr>
</tbody>
</table>
parse-S

Anything S generates must start with the only production with S on the left:

\[S \rightarrow (L) \]

If S ultimately generates a prefix of string x, then x must start with \((\). So (parse-S x) will check that first.

Note that x could be empty, in which case (parse-S x) fails.

But if x begins with \((\), say \(x = (y \) for some y, then parse-S calls (parse-L y) …

parse-S calls parse-L

• parse-S seeing input \((\) calls (parse-L y).

• (parse-L y) could do one of the following:
 fail: y can’t be generated from L
 succeed: Some prefix \(u \) of y can be generated from L, with residue \(v \), i.e. \(y = u v \) and \(u \) is generated by L.

If parse-L succeeds, it is back to parse-S, to determine whether \(z \) begins with a matching \() \).
 If so, (parse-S x) succeeds, leaving the residue for its caller.
 If there is no matching \() \), (parse-S x) fails with residue \(x \).
parse-L

- parseL has to worry about two rules:
 \(L \rightarrow S \, L \) and \(L \rightarrow \varepsilon \).

- Remember that parse functions are “hungry”:
 they want to “eat” as much input as possible.

- So parse-L begins by immediately calling parse-S.
 If that succeeds, then parse-L calls itself recursively.
 If not, parse-L succeeds without eating any input,
 corresponding to the second rule.
 Thus parse-L always succeeds, one way or the other,
 whereas parse-S may fail.

Implementation Details

Each parse function must return two things:

1. An indication of whether it succeeded or failed.
2. The residual unparsed input.

As we plan to code these functions using racket, we’ll create a data abstraction called Outcome.
Outcome data abstraction

- For now, an **Outcome** consists of only two things:
 - success or failure
 - residue of input

In future applications, we could add more things to an Outcome, which is one of the reasons we want a data abstraction and not a plain old list.

Constructors for an Outcome

internal

\[
\text{(define (make-outcome result residue)}
\text{(list result residue))}
\]

for general use

\[
\text{(define (succeed residue)}
\text{(make-outcome 'success residue))}
\]

\[
\text{(define (fail residue)}
\text{(make-outcome 'failure residue))}
\]
Accessors for an Outcome

(define (get-result Outcome) \textit{internal}
 (first Outcome))

(define (get-residue Outcome)
 (second Outcome))

(define (failed? Outcome)
 (equal? 'failure (get-result Outcome)))

(define (succeeded? Outcome)
 (equal? 'success (get-result Outcome)))

Two other housekeeping functions

(define (left-paren? char) (char=? #\(char))

(define (right-paren? char) (char=? #\) char))

These prevent the code from being cluttered with bare “magic” characters.
; Parse function for rule S -> (L)

(define (parse-S input)
 (cond
 [(null? input) (fail input)]
 [(left-paren? (first input))
 (let (
 (L1 (parse-L (rest input))) ;; can’t fail
)
 (cond
 [(null? (get-residue L1)) (fail input)]
 [(right-paren? (first (get-residue L1)))
 (succeed (rest (get-residue L1)))]
 [else (fail input)])
)
 [else (fail input)])
)

; Parse function for rules L -> S L and L -> empty

(define (parse-L input)
 (let (
 (S1 (parse-S input))
)
 (if (succeeded? S1)
 (let (
 (L2 (parse-L (get-residue S1))) ;; can’t fail
)
 (succeed (get-residue L2))
)
 (succeed input))))

;; parse-L can’t fail
; Parse function for rules L -> S L and L -> empty

(define (parse input-string)
 (let* (
 (outcome (parse-S (string->list input-string)))
 (residue (get-residue outcome))
)
 (cond
 [(and (succeeded? outcome) (null? residue))
 "fully successful"]
 [(succeeded? outcome)
 (string-append "successful, with residue:
 (list->string residue))]
 [else "unsuccessful"])))

Some Unit Tests

(check-expect (parse "()") "fully successful")
(check-expect (parse "(()())") "fully successful")
(check-expect (parse "(()()())") "fully successful")
(check-expect (parse "((())())") "fully successful")
(check-expect (parse "((())(()))") "fully successful")
(check-expect (parse "((()())(()))") "fully successful")
(check-expect (parse "(()()))" "successful, with residue: ")
(check-expect (parse "()()" "successful, with residue: ()")
(check-expect (parse "(()()" "successful, with residue: ()")
(check-expect (parse "(" "unsuccessful")
(check-expect (parse ")" "unsuccessful")
(check-expect (parse ")(" "unsuccessful")