Languages, Grammars and Parsing

Robert Keller
September 2012
What are These?

- **Language**: A set of strings.
- **Grammar**: A formal way to define a language.
- **Parser**: A program that determines whether or not a given string is in the language.
More Detail on Languages

• A language is a set of strings of symbols from a finite set called the alphabet.

• When we show languages, we usually don’t show the strings with quotes, as a convenience.
Example 1

The language of all U.S. zipcodes

\{00501, \ldots, 91711, \ldots, 99950\}

alphabet = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

This language is finite.
Example 10

The language of all binary numerals without unnecessary leading zeros

\{0, 1, 10, 11, 100, 101, 110, 111, \ldots\}

alphabet = \{0, 1\}

This language is infinite.
Example 11

- The language of all “2-adic” numerals

\{\varepsilon, 1, 2, 11, 12, 21, 22, 111, 112, 121, \ldots\}

\varepsilon \text{ stands for the } \textit{empty string}

alphabet = \{1, 2\}

This language is infinite.
Example Scrabble

The language of official Tournament Scrabble words =
{aa, aah, aahed, ..., zyzzyvas, zzz}

alphabet = {a, b, c, ..., z}

This language is finite.
Example WBP

• WBP = Well-Balanced Parenthesis Strings

• \{ () , (()) , ((())) , (((()))), (()())(), (()()()), (()()(())), … \}

• alphabet = \{ (,) \}

• This language is
Grammars

- A grammar is a **formal** (i.e. mechanical) way of defining a language.

- It is a special kind of **inductive definition**, something we’ve seen before (think S expressions).

- It can also be viewed as a **state-transition system**, also déjà vu (think Picobot).

- It is also a form of **rewriting system**, analogous to evaluating a function.
A Grammar Has 4 Parts

• An alphabet Σ, called the *terminal* alphabet.

• An alphabet N, called the *non-terminal* alphabet. N does not overlap with Σ.

• A finite set of *rules* (also called “productions”).

• A *start symbol*, always a member of N.
Rules

- A rule indicates how a non-terminal symbol within a string can be “rewritten”, i.e. be replaced by a string.

- Only non-terminal symbols can be rewritten.

- Suppose there is a rule:

 $S \rightarrow (\text{L})$

 This is read “S rewrites as (L)”, or “S produces (L)”.
Non-Determinism

• We have choices.

• For a given symbol, we may have more than one rule with that symbol as the left-hand side, e.g.

 \[L \rightarrow A \, L \]

 \[L \rightarrow \varepsilon \]

 where \(\varepsilon \) is the empty string

• Grammars are easy if you follow the rules.
Grammar as State-Transitions

• A grammar defines a state-transition system.

• The **states** are strings from the combined alphabet $\Sigma \cup N$.

• The **transitions** between states are defined on the next page.

• The **initial state** is the start symbol, say S.
Transitions

One state, a string

...X...

containing a non-terminal X, can make a transition to another state,

...α...

where α is a string of symbols in \(\Sigma \cup N \) exactly when there is a rule

\[
X \rightarrow \alpha
\]

(rule)

When this is possible, we write

...X... ⇒ ...α...

(transition)
Example

• Suppose the rules are
 \[S \rightarrow (L) \]
 \[L \rightarrow S L \]
 \[L \rightarrow \varepsilon \]

• Then here are some possible transitions
 \[(L) \Rightarrow (S L) \quad \text{using rule } L \rightarrow S L \]
 \[(L) \Rightarrow () \quad \text{using rule } L \rightarrow \varepsilon \]
 \[(S L) \Rightarrow (S S L) \quad \text{using rule } L \rightarrow S L \]
 \[(S L) \Rightarrow (S) \quad \text{using rule } L \rightarrow \varepsilon \]
 \[(S L) \Rightarrow ((L) L) \quad \text{using rule } S \rightarrow (L) \]
The Yield of a Grammar

• The **yield** of a grammar is the set of all states reachable from the start symbol by applying 0 or more rules in sequence.

• This can be done systematically by considering **each candidate rule** in turn for **each possible lefthand side symbol** in a state, beginning with the string consisting of just the start symbol.
Yield Example

• Consider the alphabets used previously, start symbol S, and rules

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S → (L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L → ε</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L → S L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• The first part of the yield is

<table>
<thead>
<tr>
<th>step</th>
<th>string</th>
<th>from state</th>
<th>using rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>S</td>
<td>start symbol</td>
<td>N/A</td>
</tr>
<tr>
<td>1.</td>
<td>(L)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>()</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>(S L)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>(S)</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Quiz

• Add the next 4 lines to the yield table.

<table>
<thead>
<tr>
<th>step</th>
<th>string</th>
<th>from state</th>
<th>using rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$S \rightarrow (L)$</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>$L \rightarrow \epsilon$</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>$L \rightarrow S L$</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

3.
4.
5.
6.
7.
8.
Grammar to Language

• Given a grammar, the language generated by the grammar is a subset of the yield containing only terminal symbols. We can construct the language by constructing the yield, collecting only the terminal strings as we go.

• The language generated by the previous grammar contains

 ()
 (())
 (() ())
 (() () ())
 ((()) ())
 ((()) (()))
 etc.
Parsing

• Parsing addresses the problem:

Based on a grammar G:

Given a string x, is x in the language generated by G, or not?

$$x \in L(G)?$$

• There is an obvious algorithm for parsing (what?) but it is generally too slow for practical use.
Determinism in Parsing

• Although we described grammars as forming a generally non-deterministic system, we want parsing to be as deterministic as possible.

• Ideally the time taken is $O(n)$ where n is the length of the string x.
Parsing by Recursive Descent

• If the grammar is constructed the right way, there is an easy way to parse its language, using recursion.

• Illustrate with the previous grammar:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S → (L)</td>
</tr>
<tr>
<td>2</td>
<td>L → ε</td>
</tr>
<tr>
<td>3</td>
<td>L → S L</td>
</tr>
</tbody>
</table>
Parsing an Input String

• Given an input string, such as

 \((() (() ()))\)

 we want to know “is this string in the language?”

In other words, is there a series of states of the form

\[S \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \ldots \Rightarrow (() (() ())) \]

[abbreviated \(S \Rightarrow^* (() (() ())) \)]

To answer such questions, use the grammar to construct a set of parse functions.
Parse Functions

- There will be one parse function parse-X for each non-terminal X.

- For this grammar, we will have two functions:
 parse-S
 parse-L

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S → (L)</td>
</tr>
<tr>
<td>2</td>
<td>L → ε</td>
</tr>
<tr>
<td>3</td>
<td>L → S L</td>
</tr>
</tbody>
</table>
Parse Function Jobs

• On each call, a parse function has a string x as input.

• The string x will be a **suffix of the original** input that has not yet been parsed. (The original input is a suffix of itself.)

• The job of the parse function is to determine whether a **prefix** of x can be generated by the corresponding non-terminal.
Success, $X \Rightarrow^* y$
Residue z

Failure, there is no prefix y of x
such that $X \Rightarrow^* y$
Residue x
There may be more than one y that works. Our convention is that the parse function will always prefer the longest such y.
Parse Function Jobs

• Here x is any string.
• (parse-S x) determines whether a prefix of x can be generated from S.
• (parse-L x) determines whether a prefix of x can be generated from L.
• These functions will be mutually recursive.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S → (L)</td>
</tr>
<tr>
<td>2</td>
<td>L → ε</td>
</tr>
<tr>
<td>3</td>
<td>L → S L</td>
</tr>
</tbody>
</table>
parse-S

Anything S generates must start with the only production with S on the left:

\[S \rightarrow (\, L\,) \]

If S ultimately generates a prefix of string \(x \), then \(x \) must start with \((\). So (parse-S \(x \)) will check that first.

Note that \(x \) could be empty, in which case (parse-S \(x \)) fails.

But if \(x \) begins with \((\), say \(x = (\, y \) for some \(y \), then parse-S calls (parse-L \(y \)) …
parse-S calls parse-L

• parse-S seeing input (y calls (parse-L y).

• (parse-L y) could do one of the following:
 fail: y can’t be generated from L
 succeed: Some prefix u of y can be generated from L, with residue v,
 i.e. y = u v and u is generated by L.

If parse-L succeeds, it is back to parse-S, to determine whether z begins with a matching)).
 If so, (parse-S x) succeeds, leaving the residue for its caller.
 If there is no matching), (parse-S x) fails with residue x.
parse-L

- parseL has to worry about two rules:
 \[L \rightarrow S \, L \] and \[L \rightarrow \varepsilon. \]

- Remember that parse functions are “hungry”: they want to “eat” as much input as possible.

- So parse-L begins by immediately calling parse-S.
 - If that succeeds, then parse-L calls itself recursively.
 - If not, parse-L succeeds without eating any input, corresponding to the second rule.
 Thus parse-L always succeeds, one way or the other, whereas parse-S may fail.
Implementation Details

Each parse function must return two things:

1. An indication of whether it succeeded or failed.
2. The residual unparsed input.

As we plan to code these functions using racket, we’ll create a data abstraction called Outcome.
Outcome data abstraction

• For now, an **Outcome** consists of only two things:

 success or failure

 residue of input

In future applications, we could add more things to an Outcome, which is one of the reasons we want a data abstraction and not a plain old list.
Constructors for an Outcome

(define (make-outcome result residue)
 (list result residue))

(define (succeed residue)
 (make-outcome 'success residue))

(define (fail residue)
 (make-outcome 'failure residue))
Accessors for an Outcome

(define (get-result Outcome) (first Outcome))

(define (get-residue Outcome) (second Outcome))

(define (failed? Outcome) (equal? 'failure (get-result Outcome)))

(define (succeeded? Outcome) (equal? 'success (get-result Outcome)))
Two other housekeeping functions

(define (left-paren? char) (char=? #\(char))

(define (right-paren? char) (char=? #\) char))

These prevent the code from being cluttered with bare “magic” characters.
; Parse function for rule S -> (L)

(define (parse-S input)
 (cond
 [(null? input) (fail input)]
 [(left-paren? (first input))
 (let (
 (L1 (parse-L (rest input))) ;; can't fail
)
 (cond
 [(null? (get-residue L1)) (fail input)]
 [(right-paren? (first (get-residue L1)))
 (succeed (rest (get-residue L1)))]
 [else (fail input)])
)
][else (fail input)]))
(define (parse-L input)
 (let (
 (S1 (parse-S input))
)
 (if (succeeded? S1)
 (let (
 (L2 (parse-L (get-residue S1))) ;; can't fail
)
 (succeed (get-residue L2))
)
 (succeed input))))

;; parse-L can’t fail
(define (parse input-string)
 (let* (
 (outcome (parse-S (string->list input-string)))
 (residue (get-residue outcome))
)
 (cond
 [(and (succeeded? outcome) (null? residue))
 "fully successful"]
 [(succeeded? outcome)
 (string-append "successful, with residue: "
 (list->string residue))]
 [else "unsuccessful"])))
Some Unit Tests

(check-expect (parse "()") "fully successful")
(check-expect (parse "((())())") "fully successful")
(check-expect (parse "((())())") "fully successful")
(check-expect (parse "((())())") "fully successful")
(check-expect (parse "((())(()))") "fully successful")
(check-expect (parse "((()())(()))") "fully successful")
(check-expect (parse "(()())") "successful, with residue:)")
(check-expect (parse "()()") "successful, with residue: ()")
(check-expect (parse "(())()") "successful, with residue: ()")
(check-expect (parse "(" "unsuccessful")
(check-expect (parse ")") "unsuccessful")
(check-expect (parse "\)\)") "unsuccessful")
(check-expect (parse "\)\)") "unsuccessful")
(check-expect (parse "\)\)\)") "unsuccessful")
(check-expect (parse "\)\)\)\)") "unsuccessful")