Regular Languages

November 5, 2012
CS 81: Computability and Logic
1. K, a set of states
2. Σ, the alphabet
3. $\Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$, the transition relation
 (or $\delta : Q \times \Sigma \to Q$, the transition function)
4. $s \in K$, the start state
5. $A \subseteq K$, the final/accepting states
The following are equivalent:

1. There is a DFA accepting the language L
2. [Rabin and Scott] There is an NFA accepting L
3. [Kleene] L is a regular set.
From NFA to DFA: the Subset Construction
Regular Languages

An inductively-defined collection of sets!

✓ \emptyset is a regular language.
✓ $\{a\}$ is regular for any $a \in \Sigma$.
✓ If L and M are regular, then so is LM and $L \cup M$.
✓ If L is regular, then so is L^*.

True or False?

1. Σ^* is regular.
2. $\{e\}$ is regular.
3. If $w \in \Sigma^*$, then $\{w\}$ is regular.
4. Every finite language is regular.
5. Every set is regular (since $\{w_1, w_2, \ldots\} = \{w_1\} \cup \{w_2\} \cup \cdots$).
Regular Expressions

An inductively-defined collection of expressions!

✓ Ø is a regexp
✓ ε is a regexp
✓ a is a regexp for any a ∈ Σ.
✓ If r₁ and r₂ are regexps, then so is (r₁r₂) and (r₁|r₂).
✓ If r is a regexp, then so is (r*).

Parenthesis Convention:

\[ab^*|c^* = (a(b^*)) | (c^*) \]
Regexp Interpretations

Regular expressions abbreviate regular languages.

- ✓ $L(\emptyset) = \emptyset$
- ✓ $L(\varepsilon) = \{\varepsilon\}$
- ✓ $L(a) = \{a\}$
- ✓ $L(r_1 r_2) = L(r_1) L(r_2)$
- ✓ $L(r_1 | r_2) = L(r_1) \cup L(r_2)$
- ✓ $L(r^*) = L(r)^*$

We say that “r matches w” if $w \in L(r)$.

True or False?

- ✓ $L(r_1) = L(r_2) \implies r_1 = r_2$
- ✓ There is a regular expression r with $L(r) = \Sigma^*$
Regular Expression Examples \((\Sigma = \{0, 1\})\)

Describe the Language

1. \(0 \mid 1\)
2. \((0\mid1)^*\)
3. \((0\mid1)\ 0^*\ 1^*\)
4. \(0^*110^*\mid1^*001^*\)

Find the regular expression

1. Strings where every 1 is followed by a 0.
2. Strings where no 1 is followed by a 0.
3. Strings where every 1 is preceded by and followed by 0.
FROM REGULAR EXPRESSION TO NFA

Construct $\text{NFA}(r)$ by structural induction (recursion) on the regular expression r.

✓ \emptyset is a regexp

✓ ϵ is a regexp

✓ a is a regexp for any $a \in \Sigma$.

✓ If r_1 and r_2 are regexps, then so is (r_1r_2) and $(r_1|r_2)$.

✓ If r is a regexp, then so is (r^*).