Languages, Reductions, and Undecidability

November 28, 2012
CS 81: Computability and Logic

An engineer and a mathematician are out for a walk and spot a house on fire. There is a garden hose lying in the yard; the engineer hooks it up and puts out the fire. They continue walking, and see a home where a couple is washing their car in their driveway. The mathematician detaches their hose and sets their house on fire, thus reducing it to a previously solved problem.
Church-Turing Thesis

If it can be done at all, then (with suitably coded inputs and outputs) it can be done by

✓ A Turing Machine
✓ Lambda Calculus
✓ An Unrestricted Grammar
✓ A 2-register machine
✓ Java
✓ Scheme
✓ Python
✓ …

Consequently, in most cases where I say “TM,” you can think “Program.”
TM Languages

✓ A TM **accepts** a string if it halts saying “yes”.

✓ A language is **semidecidable** (a.k.a. recognizable, recursively enumerable) if there is a TM that accepts exactly the strings in the language.

✓ A language is **decidable** (a.k.a. recursive) if it is accepted by a TM that always halts (i.e., the TM always says “yes” or “no”).
Decidable vs. Semidecidable

✓ If a language is decidable, then its complement is decidable. Why?

✓ If a language is semidecidable, and its complement is semidecidable, then the language is decidable. Why?
Languages of Acceptance

Which are semidecidable (by a TM)? Decidable?

✓ $A_{DFA} = \{ \langle D, w \rangle | D \text{ a DFA, } D \text{ accepts } w \}$

✓ $A_{NFA} = \{ \langle N, w \rangle | N \text{ an NFA, } N \text{ accepts } w \}$

✓ $A_{RE} = \{ \langle R, w \rangle | R \text{ a regexp, } R \text{ matches } w \}$

✓ $A_{CFG} = \{ \langle G, w \rangle | G \text{ a CFG, } G \text{ produces } w \}$

✓ $A_{TM} = \{ \langle M, w \rangle | M \text{ a TM, } M \text{ accepts } w \}$
Semidecidability

Show that these languages are semidecidable.

✓ Accepts-s := \{ \langle M \rangle \mid M \text{ accepts } s \}
✓ NE_{TM} := \{ \langle M \rangle \mid M \text{ accepts at least one } w \in \Sigma^* \}

Showing a language not semidecidable requires a different approach. (See the Homework.)
Is There More?
Digression: Bootstrapping a Compiler

Lots of compilers are written in the same language they compile!

✓ Gnu C Compiler (used in CS 105) is written in C
✓ Glasgow Haskell Compiler (used in CS 131) is in Haskell

Practical reasons to run programs on their own source code!
A_{TM} IS NOT DECIDABLE

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ a TM, } M \text{ accepts } w \}$$

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>Acc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td></td>
<td>Acc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td>Acc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td>Acc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acc.</td>
<td>Acc.</td>
</tr>
</tbody>
</table>
Is There More?

- Regular: a^*b^*
- Context Free: $a^n b^n$
- Decidable: $a^p b^p c^p$
 (p perfect)
- Semidecidable: ATM

?
What is the complement of A_{TM}?
We’ll Stop Here
Obligatory Corollary

Theorem

The language

\[H = \{ \langle M, w \rangle \mid M \text{ a TM, } M \text{ halts on } w \} \]

is not decidable.

Proof.

Suppose there were a halt-checking TM…

\[\square \]
Undecidability, So Far

1. Acceptance for TMs is semidecidable but not decidable.

\[A_{TM} = \{ \langle M, w \rangle | M \text{ a TM, } M \text{ accepts } w \} \]

2. Non-Acceptance for TMs is not semidecidable (hence not decidable).

3. TM Halting is semidecidable but not decidable.

\[H = \{ \langle M, w \rangle | M \text{ a TM, } M \text{ halts on } w \} \]
Problem Hardness

If I proved $P = NP$ then I would become rich and famous.

Therefore, being rich and famous can’t be harder than proving $P = NP$!

$Rich\ &\ Famous \leq Prove\ P = NP$
Reductions

Given problems P and Q, we say that

$$P \leq Q$$

if a solution to Q would let us solve P as well.

✓ I.e., (P is “not fundamentally more difficult” Q.)

✓ We say “P reduces to Q.”

In Math, we often show we can solve a problem X by taking advantage of previously-solved problem Q (i.e., prove $X \leq Q$)

In Theocomp, we typically prove a problem X hard by showing a solution to X would also solve the hard problem P (i.e., prove $P \leq X$).
Reductions

To prove that P reduces to Q ($P \leq Q$), it suffices to prove:

✓ If we have a solver for Q, then we can use it to solve any instance of P.
✓ I.e., show you could construct a P-solver if you could make calls to a Q-solving subroutine.

Commonly, we instead prove a “mapping reduction”:

✓ For every instance of P, we can construct an instance of Q with the same yes/no answer.

Why is this enough?
Warning

It is easy to get the reduction backwards!

Correct form:

- ✓ Assume the unknown problem X is decidable
- ✓ Show that it means that H (or A_{TM} or ...) is decidable.
- ✓ Contradiction.
- ✓ Therefore, X is not decidable

Or:

- ✓ Assume the unknown problem X is semidecidable
- ✓ Show that it means that $\neg H$ (or $\neg A_{TM}$ or ...) is semidecidable.
- ✓ Contradiction.
- ✓ Therefore, X is not semidecidable.

If you ever find yourself assuming things previously proved impossible ("assume I had a way to decide halting... then X is decidable.") you’re doing the reduction wrong!
Reduction Practice

Show the following are not decidable (e.g., by reducing A_{TM} to each).

✓ $NE_{TM} := \{ \langle M \rangle \mid M \text{ accepts at least one } w \in \Sigma^* \}$
✓ $E_{TM} := \{ \langle M \rangle \mid L(M) = \emptyset \}$
✓ $ALL_{TM} := \{ \langle M \rangle \mid L(M) = \Sigma^* \}$
✓ $Accepts-s := \{ \langle M \rangle \mid M \text{ accepts } s \}$
✓ $Regular := \{ \langle M \rangle \mid L(M) \text{ is regular} \}$