CS 81: Computability and Logic, Fall 2012

Syllabus

Summary

CS 81: An introduction to some of the mathematical foundations of computer science, particularly logic, automata, and computability theory. Develops skill in constructing and writing proofs, and demonstrates the applications of the aforementioned areas to problems of practical significance.

Prerequisites: (CS 60 ∨ CS 42 ∨ CS 52) ∧ (¬Math 55 → CS 55) ∧ ¬CS 81.

Classes: MW 11am–12:15pm, GA McAlister

Web Page: http://www.cs.hmc.edu/cs81

Course Staff (Office hours to be announced soon)

Prof. Chris Stone stone@cs.hmc.edu
Eric Autry
Jack Ma
Audrey Musselman-Brown
Stephanie Porter
John Sarracino
David Scott
Rebecca Thomas
Garrett Wong

All of us! cs81help@cs.hmc.edu

Course Goals

By the end of this course, you should be able to:

- Learn and use new formal systems;
- Understand the correspondence between formal logic and natural-language proofs.
- Write clear and logically valid proofs;
- Read and write regular languages and context-free (BNF) grammars;
- Reason about code using preconditions, postconditions, and loop invariants.
- Recognize when regular expressions, context-free-grammars, and computation will and will not work for specific problems;
- Explain how to translate among regular expressions, nondeterministic finite automata, and deterministic finite automata;
- Explain the Church-Turing thesis and list models of universal computation;

And more!
Selected Course Topics

First we’ll look at logic, both propositional and predicate forms, with an emphasis on the distinction between validity (truth) and provability (derivation). We’ll gain some experience in doing proofs in a style known as “natural deduction”, both for propositional and predicate logic. This will be a helpful way to outline proofs for the rest of your careers.

We will next review finite-state automata and their relationship to languages and regular expressions. We’ll look at the applications and limitations of these machines, then move on to the more powerful pushdown automata, which correspond to context-free languages (generated by grammars of the type you studied in CS 60).

Then we’ll look at Turing machines, which are even more computationally powerful. As with other families of machines, Turing machines have their imitations. We will show how to prove that certain problems cannot be solved algorithmically, even ones not apparently related to Turing machines.

Throughout the course we’ll be looking at the connections between logic and computability, including the relationship between logical formulas and program correctness, approaches to automated theorem proving, model checking, decision problems, and Gödel’s famous Incompleteness Theorem.

Textbooks

Getting Help

If you’re really stuck, please contact a grutor and/or the professor. Don’t waste time just spinning your wheels.

In addition to Professor Stone’s regularly-scheduled office hours, you can drop by his office (Olin 1251) any time his office door is open, or make appointments for other times. (See http://www.cs.hmc.edu/~stone/schedule.html.)

You can also use email, especially for short, easily answered questions or statements. You will get the fastest response by sending your message to all course staff via the alias cs81help@cs.hmc.edu, so please don’t send mail directly to the professor unless the topic is too private for the grutors!
Your Responsibilities

Reading email

Emails will be sent to the course mailing list cs-81-l@hmc.edu (which generally goes to your main campus account) and directly to you. You are responsible for reading all emails.

Attendance

I expect you to attend every class and participate actively. Because you will often be asked to do in-class exercises, bring blank paper and writing materials to every lecture.

Collaboration

You are encouraged to discuss the lecture and reading topics with any or all of your classmates. This can range anywhere from informal chats in the hallway to formal study groups.

You are even encouraged to discuss homework problems with other students in this class. However, the caveat here is that you must come away from homework discussions with understanding in your head, not solutions in physical or electronic artifacts. Thus you are not allowed to meet as a group and leave with notes or solutions on paper or in your computer; anything you turn in must be written solely by you, on a separate occasion. Finally, homework discussions must take place on an equal basis, e.g., not just giving away solutions.

Remember, when it comes to the exams, you're on your own. True understanding will always beat rote learning of specific homework problems.

Course Work and Grading

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>Homeworks</td>
</tr>
<tr>
<td>20%</td>
<td>Midterm</td>
</tr>
<tr>
<td>25%</td>
<td>Final Exam</td>
</tr>
<tr>
<td>5%</td>
<td>Participation</td>
</tr>
</tbody>
</table>

There will be one homework assignment every week or so. Late assignments will not be accepted except in rare special cases where prior arrangements have been made with the instructor, or in case of truly unforeseeable crises such as major illness.