Lists in Racket; Complexity and Big-O

January 23–24, 2012
CS 60: Principles of Computer Science

Suppose there’s a new meal program for faculty. At the start of the year, I choose between:

✓ **Option A.** One fixed fee for the whole year.

✓ **Option B.** A registration fee, plus a fixed per-meal charge.

✓ **Option C.** A per-plate charge, plus a per-meal surcharge that doubles (!) every meal.

At the end of the year, I might get some of my money back (e.g., if Dining Services made a big profit).

Which should I pick?
RECALL: RACKET

;; (fac n) returns n!
(define (fac n)
 (if (< n 2)
 1
 (* n (fac (- n 1))))
)

;; (fib n) returns the n-th Fibonacci number
(define (fib n)
 (cond
 ((equal? n 0) 0)
 ((equal? n 1) 1)
 (else (+ (fib (- n 1))
 (fib (- n 2)))
)
)
)
Seeing Double

What is this?

(define answer (* 6 7))

✓ It’s code! It creates a variable named answer whose value is 42.

✓ It’s data! It’s a list containing three items:
 1. The symbol define
 2. The symbol answer
 3. A list that contains a symbol and two integers.

How does Racket decide?
The Code Assumption

Racket assumes everything you write is code, and evaluates it.

(* 3 27) ;; ==> 81

(odd? (* 3 27)) ;; ==> #t

(1 2 3) ;; oops

(reverse (1 2 3)) ;; oops

What if we want to refer to data?
You Can quote Me On This!

The quote operation simply returns its argument unevaluated.

```
(quote (* 3 27)) ;; ==> (* 3 27)
(quote (odd? (* 3 27))) ;; ==> (odd? (* 3 27))
(quote (1 2 3)) ;; ==> (1 2 3)
(quote (reverse (1 2 3))) ;; ==> (reverse (1 2 3))
(reverse (quote (1 2 3))) ;; ==> (3 2 1)
```
“Syntactic Sugar” Makes Racket Sweeter

In practice, we’ll always use a handy abbreviation

```
'(* 3 27) ;; ===> (* 3 27)

'(odd? (* 3 27)) ;; ===> (odd? (* 3 27))

'(1 2 3) ;; ===> (1 2 3)

'(reverse (1 2 3)) ;; ===> (reverse (1 2 3))

(reverse '(1 2 3)) ;; ===> (3 2 1)
```
Nonempty lists have a **first** and a **rest**

\[
\begin{align*}
\text{first } \text{rest} \\
1 \quad \text{'}(2\ 3) \\
\text{cons} \\
\text{'}(1\ 2\ 3)
\end{align*}
\]

\[
\begin{align*}
(\text{first } \text{'(1\ 2\ 3)}) & \implies 1 \\
(\text{rest } \text{'(1\ 2\ 3)}) & \implies \text{'(2\ 3)} \\
(\text{cons} 1 \text{'(2\ 3)}) & \implies \text{'(1\ 2\ 3)}
\end{align*}
\]
rest’s All The Way Down...
Other Useful Operations, by Example

```
(null? '(1 2 3)) ;; ==> #f
(null? '() ) ;; ==> #t

(second '(1 2 3)) ;; ==> 2
(third '(1 2 3)) ;; ==> 3

(length '(1 2 3)) ;; ==> 3

(append '(1 2) '(3)) ;; ==> '(1 2 3)

(list 1 2 (+ 1 2)) ;; ==> '(1 2 3)

'(1 2 (+ 1 2)) ;; ==> '(1 2 (+ 1 2))
```
Exercise: What Do These Evaluate To?

\[
\begin{align*}
(\text{cons} \ 'a \ '(b \ c)) & \quad (\text{cons} \ '(a) \ '(b \ c)) \\
(\text{list} \ 'a \ '(b \ c)) & \quad (\text{list} \ '(a) \ '(b \ c)) \\
(\text{append} \ 'a \ '(b \ c)) & \quad (\text{append} \ '(a) \ '(b \ c)) \\
(\text{reverse} \ '((a \ b) \ c \ d)) & \quad (\text{first} \ 'a)
\end{align*}
\]
“Quiz” 1

NAME:

Fill in the 6 blanks.

(define L '(h a r))

(define M '(e v))

(list L L) ;; ===>

(cons L M) ;; ===>

(list M 'u 'd 'd) ;; ===>

(append L (reverse L)) ;; ===>

;; ===> '(r a v e)

;; ===> '(h a r v e y) [use 'y]
Running Time

Given a fixed “algorithm,” the actual running time can depend on
✓ the way the program is translated into machine code
✓ the details of the hardware (CPU, memory, cache, hard drive)
✓ the details of the operating system
✓ the particular input being tested
✓ and many other factors.

Asymptotic analysis (“Big O”) lets us ignore all these factors, by
✓ Finding an upper bound on number of “steps” required
✓ Ignoring constant factors
Big-O Examples

We ignore constant factors, and non-dominant terms.

✓ 60 is $O(1)$.
✓ $n + 60$ is $O(n)$
✓ $2n^2 + 5n$ is $O(n^2)$
✓ $\ln(n^9)$ is $O(\log n)$.
✓ $12n^2 + 4n^3 + 235255$ is $O(n^3)$.
Example: Computing the Running Time of \texttt{halve-count}

Algorithm:

\begin{verbatim}
(define (halve-count N)
 (if (equals? 1 N)
 0
 (+ 1 (halve-count (quotient N 2)))))
\end{verbatim}

1. How do we measure the “size” \(n \) of the input?
 \textbf{The value of the input} \(N \)

2. What constant-time “step” occurs most frequently?
 \textbf{(or, within a constant factor of being most frequent!)}
 \texttt{equals?}, \texttt{or +}, \texttt{or quotient}, \texttt{or calling the halve-count function}, or …

3. Count (asymptotically) occurrences of this step.
 \textbf{\(O(\log n) \)}, where \(n \) is the value of the input
Example: Finding the Minimum in a List of Numbers

Algorithm:

Check each number in turn; keep track of the minimum so far; return that value when we reach the end.

1. How do we measure the “size” n of the input?

 The length of the given list

2. What constant-time “step” occurs most frequently?

 (or, within a constant factor of being most frequent!)

 comparisons, or …

3. Count (asymptotically) occurrences of this step.

 $O(n)$, where n is the length of the list
Example: Sorting a List of Numbers

Algorithm ("Selection Sort")

Find the smallest number that has not yet been marked, mark it, and copy it into the output. Repeat until all elements have been marked.

1. How do we measure the “size” \(n \) of the input?
 The length of the given list

2. What constant-time “step” occurs most frequently?
 (or, within a constant factor of being most frequent!)

3. Count (asymptotically) occurrences of this step.
 \(O(n^2) \), where \(n \) is the length of the list
“Quiz” 2

NAME:

Estimate the worst-case complexity for these problems:

1. Finding the minimum of a list, where \(n \) is the length of the list. Count the number of comparisons. \(O(n) \)

2. Sorting a list of length \(n \) via repeated minimum-finding. Count the number of comparisons. \(O(n^2) \)

3. Determine a hidden integer between 1 and \(n \). You’re told whether each guess is > or < (or =). Count the number of guesses required.

4. Opening a combination bike lock, where the combination has \(n \) decimal digits. Count the number of guesses required.

5. Finding the dot product of two vectors, both of length \(n \). Count the multiplications required.

6. Multiply two square \(n \) by \(n \) matrices. Count the multiplications required.

7. Find the median of a list of length \(n \). Count the number of comparisons.

8. Determine if a program with \(n \) characters will go into an infinite loop when run. Count all operations.
Suppose I want to choose among three algorithms that process a list of integers. In terms of \(n \), the number of integers, their running time is:

- Algorithm A. \(O(1) \).
- Algorithm B. \(O(n) \).
- Algorithm C. \(O(2^n) \).

Which should I pick?
A Story

Suppose there’s a new meal program for faculty. At the start of the year, I choose between:

✓ **Option A.** One fixed fee for the whole year.

✓ **Option B.** A registration fee, plus a fixed per-meal charge.

✓ **Option C.** A per-plate charge, plus a per-meal surcharge that doubles (!) every meal.

At the end of the year, I might get some of my money back (e.g., if Dining Services made a big profit).

Which should I pick?
EVALUATING BIG-O

Suppose I want to choose among three algorithms that process a list of integers. In terms of \(n \), the number of integers, their running time is:

✓ Algorithm A. \(O(1) \).
✓ Algorithm B. \(O(n) \).
✓ Algorithm C. \(O(2^n) \).

Which should I pick?