Review

Higher-Order Functions

Trees

January 30–31, 2012

CS 60: Principles of Computer Science

Assignment 1 due Monday 1/30
Assignment 2 due Monday 2/6
ALIENS!

> (alien 20 "darkgreen")

> (alien 10)

> (alien "green")

> (alien 10)

> (alien "red")

> (alien "blue")
In the world of Big-O...

✓ Constant factors are ignored
✓ Inputs are arbitrarily large (so “small” summands can be ignored)
✓ We are looking for upper bounds.

\[
O(1) \begin{cases}
6 \text{ steps} \\
1 \text{ (big?) step} \\
\text{no more than 4000 steps} \\
\text{somewhere between 2 and 47 steps, depending on the input.}
\end{cases}
\]

\[
O(n) \begin{cases}
100n + 3 \text{ steps} \\
n/2 + 7 \log_2 n + 10,000,000 \text{ steps} \\
\text{anywhere between 3 and 69 steps per item, for } n \text{ items.}
\end{cases}
\]

\[
O(n^2) \begin{cases}
2n^2 + 100n + 3 \text{ steps} \\
n^2/3 \text{ steps} \\
\text{somewhere between 1 and 40 steps per item, for } n^2 \text{ items} \\
\text{anywhere between 1 and 7n steps per item, for } n \text{ items.}
\end{cases}
\]
Computing Length

; Given a list L, return its length.
; Already built-in as the function "length"
(define (myLength L)
 (cond
 [(null? L) 0]
 [else (+ 1 (myLength (rest L)))]
))

Running time?
Let n be the length of the initial list and let T(n) be the (big-O) steps for an input of size n.
✓ Then T(0) = 1; otherwise T(n) = 1 + T(n - 1).
✓ So, T(n) = 1 + T(n - 1) = 2 + T(n - 2) = ⋅⋅⋅ = n + T(0) = O(n).

Alternatively:
✓ We look at n elements of the list
✓ We do O(1) work per item (testing for empty, adding one, etc.)
✓ O(n) × O(1) = O(n × 1) = O(n).
APPEND

; Already built-in, but this is how it works.
(define (append L M)
 (cond
 [(null? L) M]
 [else (cons (first L) (append (rest L) M))]
))

Running time?
Let \(n \) be the length of the first list and let \(T(n) \) be the (big-\(O \)) steps for an input of size \(n \).

\(\checkmark \) Then (asymptotically) \(T(0) = 1 \); otherwise \(T(n) = 1 + T(n - 1) \).

\(\checkmark \) So, \(T(n) = 1 + T(n - 1) = 2 + T(n - 2) = \cdots = n + T(0) = O(n) \).
How efficient is it?

(define (rev L)
 (cond
 [(null? L) '()]
 [else (append (rev (rest L))
 (list (first L)))])

Let \(n \) be the length of the input and let \(T(n) \) be the (big-O) steps for an input of size \(n \).

Then (asymptotically!) \(T(0) = 1; \) otherwise \(T(n) = n + T(n - 1) \).

So, \(T(n) = n + T(n-1) = n + (n-1) + T(n-2) = \cdots = n + (n-1) + \cdots + 3 + 2 + 1 + T(0) = O(n^2) \).
COMPARING (fac **4)**

General Recursion: (4 \times (3 \times (2 \times 1)))

\[
(fac \ 4) \ = \ (4 \ * \ (fac \ 3)) \\
= \ (4 \ * \ (3 \ * \ (fac \ 2))) \\
= \ (4 \ * \ (3 \ * \ (2 \ * \ (fac \ 1)))) \\
= \ (4 \ * \ (3 \ * \ (2 \ * \ 1))) \\
= \ (4 \ * \ (3 \ * \ 2)) \\
= \ (4 \ * \ 6) \\
= \ 24
\]

Tail Recursion: (((4 \times 3) \times 2) \times 1)

\[
(fac \ 4) \ = \ (fac\-help \ 4 \ 1) \\
= \ (fac\-help \ 3 \ 4) \\
= \ (fac\-help \ 2 \ 12) \\
= \ (fac\-help \ 1 \ 24) \\
= \ 24
\]
Two Approaches To Using Recursion

“General Recursion”

- ✓ Take in a number (or list)
- ✓ Recurse on predecessor (or `rest`)
- ✓ Compute answer for the given input

```scheme
(define (fac N)
  (cond
    [ (< N 2) 1 ]
    [ else (* N (fac (- N 1))) ]
  )
)
```

“Tail Recursion”

- ✓ Add an extra “accumulator” argument
- ✓ The accumulator summarizes the numbers/list elements seen so far
- ✓ At the end, return the accumulator.

```scheme
(define (fac N)  (fac-help N 1)
(define (fac-help N A)
  (cond
    [ (< N 2) A ]
    [ else (fac-help (- N 1) (* N A)) ]
  )
)
```
Comparing (rev '(1 2 3 4))

General Recursion

\[(\text{rev } '(1 2 3 4))\]
\[= \ (\text{append} \ (\text{rev } '(2 3 4)) \ '(1))\]
\[= \ (\text{append} \ (\text{append} \ (\text{rev } '(3 4)) \ '(2)) \ '(1))\]
\[= \ (\text{append} \ (\text{append} \ (\text{append} \ (\text{rev } '(4)) \ '(3)) \ '(2)) \ '(1))\]
\[= \ (\text{append} \ (\text{append} \ (\text{append} \ (\text{append} \ (\text{rev } '()) \ '(4)) \ '(3)) \ '(2)) \ '(1))\]
\[= \ (\text{append} \ (\text{append} \ (\text{append} \ (\text{append} \ '() \ '(4)) \ '(3)) \ '(2)) \ '(1))\]
\[= \ (\text{append} \ (\text{append} \ (\text{append} \ '() \ '(4)) \ '(3)) \ '(2)) \ '(1))\]
\[= \ (\text{append} \ (\text{append} \ '() \ '(4)) \ '(3)) \ '(2)) \ '(1))\]
\[= \ (\text{append} \ '() \ '(4)) \ '(3)) \ '(2)) \ '(1))\]
\[= \ '() \ '(4) \ '(3) \ '(2)) \ '(1))\]
\[= \ '(4 3 2) \ '(1))\]
\[= \ '(4 3 2 1)\]

Tail Recursion

\[(\text{rev } '(1 2 3 4)) \ = \ (\text{rev-help } '(1 2 3 4) '())\]
\[= \ (\text{rev-help } '(2 3 4) '(1))\]
\[= \ (\text{rev-help } '(3 4) '(2 1))\]
\[= \ (\text{rev-help } '(4) '(3 2 1))\]
\[= \ (\text{rev-help } '() '(4 3 2 1))\]
\[= \ '(4 3 2 1)\]
Tail-Recursive Reverse

(define (rev L)
 (rev-help L '()))

;; L contains the remaining elements to reverse
;; A contains the reverse of the elements we've seen so far
(define (rev-help L A)
 (cond
 [(null? L) A]
 [else (rev-help (rest L) (cons (first L) A))]
))
)

How efficient is it?
Since cons, first, rest, etc. are all O(1), for a list of length n we can define the
number of steps T(n) needed for reverse by T(0) = 1 and T(n) = 1 + T(n − 1).
Thus, O(n).
Does this work?

\[
\text{(define (fast-pow b p)}
\begin{align*}
&\quad \text{(cond} \\
&\quad \quad ((< p 1) 1) \quad ; \text{base case} \\
&\quad \quad ((\text{odd? } p) \\
&\quad \quad \quad (* b (\text{fast-pow } b (- p 1)))) \quad ; \text{odd case} \\
&\quad \quad (\text{else} \\
&\quad \quad \quad (* (\text{fast-pow } b (/ p 2)) \\
&\quad \quad \quad (\text{fast-pow } b (/ p 2)))))) \quad ; \text{even case}
\end{align*}
\]

It produces the right answer, but it unnecessarily repeats work. For example, \((\text{fastpow } b 16)\) computes \((\text{fastpow } b 8)\) twice, which together computes \((\text{fastpow } b 4)\) four times, \((\text{fastpow } b 2)\) eight times, ... One can show that the running time is \(O(n)\).
let* \(T \in O(\log n) \)

```
(define (fast-pow b p)
  (cond
    ((< p 1) 1) ; base case

    ((odd? p)
      (* b (fast-pow b (- p 1)) )) ; odd case

    (else

      (let* ( [ halfp (/ p 2) ]
                  [ bp2  (fast-pow b halfp) ] )
        (* bp2 bp2) ) ; even case
    )
  )
)```
Good News, Bad News

Recursion is very common in Racket, but you can often avoid it completely! How are these similar? How are these different?

;; find squares of numbers
(define (squares L)
  (if (equal? L '())
    ()
    (cons (square (first L))
          (squares (rest L))))
)

;; (squares '(1 2 3 4))
;; ===> '(1 4 9 16)

;; find factorials of numbers
(define (facs L)
  (if (equal? L '())
    ()
    (cons (fac (first L))
          (facs (rest L))))
)

;; (facs '(1 2 3 4))
;; ===> '(1 2 6 24)
map: A Recursion Alternative

;;; apply function f to all the elements in L
(define (map f L)
  (if (null? L)
      '()
      (cons (f (first L)) (map f (rest L)))))

(define (facs L) (map fac L))

(define (squares L)
Some "Anonymous Functions" in Racket

✓ The “successor function” (Does the name x matter?)
   (lambda (x) (+ x 1))

✓ The “geometric mean” function
   (lambda (x y) (sqrt (* x y)))

✓ The “is-greater-than-5 function”
   (lambda (N) (> N 5))

✓ The “is-a-list-of-length-two function”
   (lambda (L) (and (list? L) (= (len L) 2)))

✓ The squaring function?
Syntactic Sugar Makes Racket Sweeter

The function definitions we saw earlier:

(define (square x) (* x x))

are just abbreviations for:

(define square (lambda (x) (* x x)))

Of course, you don’t have to give functions names before using them:

((lambda (x) (+ x x)) 12)
Higher-Order Functions

Functions that take functions as arguments (like `map`) or return functions as results...

```
(define (wrap tag)
 (lambda (text) (list tag text tag)))
```

What is `(wrap 'w) 'o)`?

1. Error
2. `#procedure`
3. `(w o)`
4. `(w o w)`
5. `(o w o)`
WHAT DOES foldr DO?

(foldr + 0 '(3 4 5)) ;; ==> 12

(foldr cons '() '(1 2 3 4)) ;; ==> '(1 2 3 4)

Notes:
✓ Sometimes called reduce
✓ There's also a foldl
WHAT DO filter AND sort DO?

(filter odd? '(1 2 3 4 5)) ;; ==> '(1 3 5)

(filter (lambda (n) (> n 3)) '(1 2 3 4 5)) ;; ==> '(4 5)

(sort '(3 1 2 4 5) <) ;; ==> '(1 2 3 4 5)

(sort '(3 1 2 4 5) >) ;; ==> '(5 4 3 2 1)
Given a list of lists L, combine them all into a single list.

; (smush '((t h i) (s i s) (s o c o) (o l) ))
; ===> '(t h i s i s s o c o o l )

(define (smush L))

Add k to each element of L (all will be numeric)

; (addk 60 '(-18 101 7940))
; ===> '(42 161 8000)

(define (addk k L))

Given two lists, return the number of elements they have in common.

; Hint: use filter and member

(define (matches T W)
**Careful!**

*Only one of these works. Why?*

(define (addk k L)
  (map (lambda (x) (+ k x)) L))

(define (addk k L)
  (map (+ k x) L))

(define (addk k L)
  (map (+ k) L))
MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

Abstract

MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key. Many real-world tasks are expressible in this model, as shown in the paper.

Programs written in this functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the details of partitioning the input data, scheduling the program's execution across a set of machines, handling machine failures, and managing the required inter-machine communication. This allows programmers without any experience with parallel and distributed systems to easily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large cluster of commodity machines and is highly scalable: a typical MapReduce computation processes many terabytes of data on thousands of machines. Programmers find the system easy to use: hundreds of MapReduce programs have been implemented and upwards of one thousand MapReduce jobs are executed on Google's clusters every day.

Appeared in:
OSDI'04: Sixth Symposium on Operating System Design and Implementation,

Download: PDF Version
Slides: HTML Slides
**Two Common Interfaces**

**Set: An unordered collection**
- tea
- cheese
- beans
- pear
- bacon
- pineapple
- yam
- sausage
- biscuit
- ice cream
- steak
- olive
- peach

What operations do we expect?

**Map: Associates “keys” with “values”**
- tea
  - beverage for english people
  - made from milk + bacteria
  - + time
- cheese
- bacon
- thinly sliced pig
  - made from dead cows
- sausage
  - made from misc meat bits
- beans
  - good for your heart
- ice cream
  - creamy fatty goodness

What operations do we expect?
**IMPLEMENTATION 1: LISTS**

Sets as unordered lists

("tea" "cheese" "tomato" "biscuit" ...)

Maps as association lists

( ["tea" "beverage for english people"]
  ["bacon" "thinly sliced pig"]
  ...
)

Given this representation, you already can write code for set-lookup, map-lookup, set-insert, map-insert, set-delete, map-delete, etc.

But what is the big-O running time for a set/map of size \(n\)?
SEARCHING THROUGH A PHONE BOOK

$2^{30}$ entries

((“AAA Aardvark Training” “909-555-NICE”)
(“AAA Alligators” “909-555-BITE”)
...
(“Zyzyva Exterminators” 909-555-GONE”))
**Implementation 2: Binary Search Trees**

- Nodes have up to two children
- Left subtrees have smaller keys; right subtrees have bigger keys.

**Diagram**:

- **Mo’s Mermaids**: 909-555-Pzza
- **Fran’s Foto**: 909-555-FOTO
- **Pam’s Pretzels**: 909-555-PRZL
- **AAA Aardvark Training**: 909-555-NICE
- **Henry’s Hams**: 909-555-OINK
- **Zyzzyva Exterminators**: 909-555-GONE

*(Sets are similar, with no “value” in the node)*

---

**Mo’s Mermaids**: 909-555-Pzza

**Fran’s Foto**: 909-555-FOTO

**Pam’s Pretzels**: 909-555-PRZL

**AAA Aardvark Training**: 909-555-NICE

**Henry’s Hams**: 909-555-OINK

**Zyzzyva Exterminators**: 909-555-GONE

---

**Search on the key, Return the value!**
**Binary Search Trees**

Identifying Features:

- ✓ Every node has two subtrees
- ✓ Each node has a “key”
- ✓ The root key is always greater than all nodes in a left subtree
- ✓ The root key is always less than all nodes in a right subtree

But Racket only has lists...?