Computers: What can’t they do!

Computers: What can’t they do?

Part 5: Undecidability

April 23–24, 2012

CS 60: Principles of Computer Science
Vocabulary for Decision Problems

Decidable
✓ There is a program/algorithm/TM that always gives correct answers in finite time.
✓ Such a program is often called a checker

Undecidable
✓ The problem is not decidable.

Semidecidable
✓ There is a program/algorithm/TM that never gives a wrong answer.
✓ And if the answer is “yes,” this will be reported.
Manual Halt Checking

Do these functions halt (or stop or return) on the input 60?

```python
def P1(w):
    if (w == 0):
        return
    else:
        P1(w-1)

def P2(w):
    if (w == 0):
        return
    else:
        P2(w+1)
```
def HC(P, w):
 """Takes a program (function) P, and an input w, and returns True or False depending on whether P(w) would terminate if started.""
 ...
 put clever code here...

 E.g., HC(P1,60) == True and HC(P2,60) == False.

Is it weird that our function takes code as input?

Is halt-checking at least semidecidable?

Is halt-checking obviously undecidable?
def goldbachCE(n):
 for i in range(2, n-1):
 if prime(i) and prime(n-i):
 goldbachCE(n+2)
 return n

print HC(goldbachCE, 4)
Halting is Undecidable

Suppose a Halt-Checker program exists:

```python
def HC(P, w):
    """Takes a program (function) P, and an input w, and returns True or False depending on whether P(w) would terminate if started.""
    ...put clever code here...
```

Our plan: Proof by Contradiction.

✓ Construct a new program that uses this HC as a subroutine
✓ Show the new program cannot possibly exist.
def cant(P):
 # KEY IDEA
 # We can write any code we want here
 # *and* we can call HC as a helper function
 # that is guaranteed to work correctly.
The Function cant

```python
def cant(P):
    if HC(P, P):
        while True: pass  # infinite loop
    else:
        return 60
```  

```python
def lt5000(s):
    if len(s) < 5000:
        return len(s)
    else:
        return lt5000(s + "++")
```

```python
def lt5(s):
    if len(s) < 5:
        return len(s)
    else:
        return lt5(s + "++")
```

What does cant(lt5000) do?

What does cant(lt5) do?
def cant(P):
 if HC(P, P):
 while True: pass # infinite loop
 else:
 return 60

Does \texttt{cant(cant)} go into an infinite loop?

Does \texttt{cant(cant)} terminate?

Are there any practical reasons to run code and give it its own program as input?
Beyond Basic Halting

Now that we know that Halting is not decidable, we can use this to show other problems are undecidable.

Reduction from Halting: Show that if we could solve some problem P, then we could use that solution to build a Halt Checker HC!

Hence, P is not decidable either.
The No-Input Halting Problem

Suppose we consider only programs that take no input (equivalently, TMs started on a blank tape). Can we determine whether these halt?

```python
def NIHC(P):
    """Returns True if P() would halt, and returns False if not.""
    ...put clever code here...
```

Plan: Show that we can’t write NIHC, by showing this helper function would let us write HC!
No-Input Halting is Undecidable

```python
def HC(P, w):
    """Returns True if P(w) halts; False otherwise"""
    def Q():
        P(w)
    return NIHC(Q)
```

To verify:

if NIHC always returns a correct answer, would HC always return a correct answer?
We show that a blank-tape-halt-checker cannot exist by reduction from the Halting Problem. Assume that a blank-tape-halt-checker BT(P) does exist. We build a program HC(P,w), which takes a program P and a string w as input, as follows:

1. Build a Turing Machine that takes no inputs. It first writes the string w to its blank tape, and then runs P on that tape. Call this no-input turing machine TM. Note that TM effectively runs P on w.
2. Call our blank-tape-halt-checker on this TM: BT(TM)
3. If BT(TM) reports that TM halts, halt and output “Yes”
4. If BT(TM) reports that TM does not halt, halt and output “No”

As long as BT exists, this constructed HC is a legitimate program. All of the steps are computable: writing a single, known string to a blank tape, running a turing machine’s program, and conditional-checking. However, note that HC(P,w) is a halt checker!

✓ If P halts on w, HC(P,w) returns “Yes” (because TM will halt on no input, so BT(TM) returns “Yes”)
✓ If P does not halt on w, HC(P,w) returns “No” (because TM will not halt on no input, so BT(TM) returns “No”)

Since a halt-checker cannot exist, we have reached a contradiction. Thus, our original assumption that the blank-tape-halt-checker exists was false. A blank-tape-halt-checker also cannot exist.
To Show: All-Input Halting is undecidable, by reduction from Halting.
Suppose we have a solution

def AIHC(P):
 """Returns True if P(x) halts for *every* input x; returns False otherwise."""
 ...put clever code here...

Show a contradiction, that we could use AIHC to write a Halt Checker:

def HC(P, w):
 """Returns True if P(w) halts; returns False otherwise"""
 def Q(x):
 # Goal: Q halts on all inputs iff P(w) halts
 return AIHC(Q) # Don't run Q; just check it!
To show: CS5 auto-grading is undecidable, by reduction from Halting.
Suppose we have a solution

```python
def EQ(P, SampleSolution):
    """Returns True if P and SampleSolution do the same thing
    for all inputs; returns False otherwise.""
    ...put clever code here...

Show a contradiction, that we could use EQ to write a Halt Checker:

def HC(P, w):
    """Returns True if P(w) halts; returns False otherwise""
    def Q1(x):
        ...def Q2(y):
        return EQ(Q1, Q2) # Goal: Q1, Q2 same iff P(w) halts
**Rice’s Theorem**

**Theorem**

_No nontrivial property of a program’s input/output behavior is decidable._
Theorem
There is no perfect size-optimizing compiler.

Proof. Any program that infinite loops without output could be identified, as it would reduce to a single loop instruction:

L1: jmp L1
Perfect Garbage Collection is Undecidable

Java, Python, Haskell, Scheme, etc., all rely on garbage collection to deallocate unused memory.

✓ At any point during execution, a piece of data is live if it will be used in the future, and otherwise dead or garbage.

✓ A garbage collector detects and deallocates garbage.

✓ Perfect garbage collection is undecidable.
Kolmogorov Complexity

Fix a programming language. For each natural number $n > 0$, define

$$k(n) := \text{length of the smallest program that prints the number } n$$

In Python, we know that

$$k(n) \leq \lceil \log_{10} n \rceil + 8$$

Note:

$$k(100000000000000000000000000000...00000) \ll k(170117684200068728224888577...85601)$$
Suppose this function exists, always works, and is, say, 42,000 characters long.

```python
def k(n):
 """Returns the length of the shortest Python program that prints the number n""
 ...put clever code here...

def ouch():
 x = 0
 while k(x) < 50000:
 x += 1
 return x
```

What's wrong?
Given a set of template tiles, can you cover the plane with them?

✓ Constraints: edge colors must match, no rotations

For this set: yes, but not periodically (Proved in 1996.)
For an arbitrary set of tiles: undecidable.
Tessellation

Abstract

We present a simple stochastic system for non-periodically tiling the plane with a small set of Wang Tiles. The tiles may be filled with texture, patterns, or geometry that when assembled create a continuous representation. The primary advantage of using Wang Tiles is that once the tiles are filled, large expanses of non-periodic texture (or patterns or geometry) can be created as needed very efficiently at runtime.

means to overcome this problem is to create (or capture) a small example of complexity and then reuse this example many times. Unfortunately, when the same example is used many times in a periodic fashion, the repetition is often apparent and distracting.

We present a new stochastic algorithm to non-periodically tile the plane with a small set of Wang Tiles [Wang 1961; Wang 1965]. This allows Wang Tiles to share the efficiency of reusing example tiles to create large expanses of complex texture, patterns, or pre-lighted geometry at runtime, while avoiding the obvious visual artifacts of

SIGGRAPH 2003
Wang Tiles, Applied
Wang Tiles, Applied

artifacts from regular tiling:

vs. more natural result from aperiodic Wang tilings: