Determine for each claim below if there is a mistake in the proof; if so, point it out explicitly. In the case where the claim itself is correct but the proof is wrong (incorrect or incomplete), provide a correct proof.

Claim 1 *Every student taking CS81 will receive the same grade.*

Proof: We prove this by induction on the number \(N \) of students taking CS81.

The base case is \(N = 1 \) which is trivially true. Assume that the claim holds for \(N = k \), where \(k \geq 1 \). Consider the case where \(N = k + 1 \). All but the \((k + 1)\)-th student receive the same grade by the inductive hypothesis. Similarly, all but the first student receive the same grade. Thus, all \(k + 1 \) students receive the same grade. So, the claim for \(k + 1 \) holds.

This shows that all students taking CS81 receive the same grade. □

Claim 2 *Two equals three.*

Proof: Consider the identity \(2 = \frac{6}{5-2} \). By recursively applying the identity to 2 on the right-hand side, we obtain

\[
2 = \frac{6}{5-\frac{6}{5-\frac{6}{5-\ldots}}}.
\] (1)

By the same token, consider the identity \(3 = \frac{6}{5-3} \). By recursively applying the identity to 3 on the right-hand side, we obtain

\[
3 = \frac{6}{5-\frac{6}{5-\frac{6}{5-\ldots}}}.
\] (2)

Since the right-hand sides of (1) and (2) are equal, this proves that 2 equals 3. □

Claim 3 \(\sqrt{3} \) is irrational.

Proof: Suppose that \(\sqrt{3} \) is rational, that is, \(\sqrt{3} = \frac{a}{b} \), for two integers \(a \) and \(b \). Thus, \(a^2 = 3b^2 \). By arguments similar to the proof that \(\sqrt{2} \) is irrational, we arrive at a contradiction. This shows that \(\sqrt{3} \) is irrational. □

Claim 4 *Any tree with at least two vertices has a vertex of degree one. Recall that a tree is a connected graph with no cycles.*

Proof: By induction on the number of vertices \(N \) of the tree.

The base case for \(N = 2 \) vertices is obvious. Suppose the claim holds for any tree with \(N = k \) vertices, where \(k \geq 2 \). Let \(T \) be a tree with \(N = k + 1 \) vertices. Pick a collection of \(k \) vertices from \(T \). By the inductive hypothesis, this collection contains a vertex of degree one.

This proves the claim. □