Policy on homeworks

1. **Collaboration**: You may discuss a question with any other student currently taking CS81 provided:
 (i) both of you contribute equally; (ii) you come away from any discussion with an understanding in your mind (and no archived solution of any form is retained); (iii) your submission is your own work prepared by yourself on a separate occasion.

2. **Reference materials**: You should only refer to materials from this semester of CS81 (class notes, handouts, textbooks, grutors, instructor, etc).

3. **Submission**: Your submission should be legible or is prepared using TeX.

Regular languages

(A) Provide DFAs for the following languages.

 (i) \(L = \{ w \in \{0,1\}^* : w \text{ contains the same number of } 01 \text{'s and } 10 \text{'s} \}. \)

 (ii) \(L = \{ w \in \{0,1\}^* : w \text{ is the binary representation of a number that is divisible by } 3 \}. \)

 (iii) \(L = \{ w \in (\{0,1\} \times \{0,1\} \times \{0,1\})^* : w \text{ encodes binary addition} \}. \) For example,

 \[
 \begin{bmatrix}
 0 \\
 1 \\
 1 \\
 0 \\
 1 \\
 0 \\
 0 \\
 1 \\
 0
 \end{bmatrix} \in L, \quad \text{but} \quad \begin{bmatrix}
 0 \\
 1 \\
 1 \\
 1 \\
 1 \\
 0
 \end{bmatrix} \notin L.
 \]

(B) Consider the regular expression \(R = (0 \cup 1(01^*0)^*1)^* \).

 (i) Find the smallest DFA you can construct for \(L = L(R) \).

 (ii) Describe succinctly what \(L \) is: \(L = \{ w \in \{0,1\}^* : w \text{ is ...} \}. \)

(C) Consider the following assertions:

 (1) If \(L \) is regular, then so is \(L^c \) (the complement of \(L \)).

 Proof. (sketch) If \(L \) is regular, then there is an NFA \(M \) that accepts \(L \). Switch each state of \(M \) from accepting to non-accepting and vice versa. Call the new machine be \(M' \). Then \(M' \) accepts of \(L^c \). □

 Is the proof sketch above correct? If yes, provide the missing details (for example, why does \(M' \) accept \(L^c \)). If not, explain what is wrong and provide the correct proof.

 (2) If \(L_1 \) and \(L_2 \) are regular, then so is \(L_1 \cap L_2 \).

 Proof. (sketch) Note \(L_1 \cap L_2 = (L_1^c \cup L_2^c)^c \). Since regular languages are closed under union and complementation (see previous part), \(L_1 \cap L_2 \) is regular. □

 i. Is this proof sketch correct? If not, explain why and provide a correct proof. If yes, provide any missing details if any.
ii. Describe a direct construction of a DFA for \(L_1 \cap L_2 \) from the DFAs for \(L_1 \) and \(L_2 \).

(3) If \(L \) is regular, then so is \(\text{Suffix} (L) \), where \(\text{Suffix} (L) = \{ w \in \Sigma^* : xw \in L, \text{ for some } x \in \Sigma^* \} \).

Proof. (sketch) If \(L \) is regular, then let \(M \) be any DFA that accepts \(L \). Add \(\epsilon \)-moves from the start state of \(M \), say \(s \), to each state \(q \) of \(M \). Call the new machine \(M' \). Then \(M' \) accepts \(\text{Suffix} (L) \).

Is the proof sketch above correct? If yes, provide the missing details (for example, why does \(M' \) accept \(\text{Suffix} (L) \)). If not, explain what is wrong and provide the correct proof.