Policy on homeworks

- **Collaboration**: You may discuss a question with any other student currently taking CS81 provided: (i) both of you contribute equally; (ii) you come away from any discussion with an understanding in your mind (and no archived solution of any form is retained); (iii) your submission is your own work prepared by yourself on a separate occasion.

- **Reference materials**: You should only refer to materials from this semester of CS81 (class notes, handouts, textbooks, grutors, instructor, etc).

- **Submission**: Your submission should be legible or is prepared using TeX.

Grammars

1. Consider the following context-free grammar \(G = (V, \Sigma, R, S) \), where \(V = \{ E, T, F \} \), \(\Sigma = \{ a, *, (,) \} \), \(S = E \), and rules \(R \) defined as:

\[
E \rightarrow ET | T \\
T \rightarrow T* | F \\
F \rightarrow (E) | a
\]

(a) Draw a pushdown automata (PDA) for \(L(G) \).
(b) Convert \(G \) to Chomsky Normal Form. Show and explain your steps.
(c) Decide if \(w \in L(G) \) for \(w = a*a*a \) using the Cocke-Younger-Kasami (CYK) algorithm. If \(w \in L(G) \), show how to recover the derivation \(S \Rightarrow w \) from the dynamic programming table.
(d) Convert \(G \) to Greibach Normal Form. Show and explain your steps.
(e) Is \(G \) an ambiguous grammar?

2. An unrestricted grammar is a 4-tuple \(G = (V, \Sigma, R, S) \) where \(V \) is a finite set of variables, \(\Sigma \) is a finite alphabet, \(S \) is a start symbol, and \(R \subseteq (V \cup \Sigma)^*V(V \cup \Sigma)^* \times (V \cup \Sigma)^* \) is a set of rules.

Consider the following grammar \(G = (\{S, L, A, B, [,]\}, \{a, b\}, R, S) \) with the rules:

\[
S \rightarrow L] \\
L \rightarrow La | Lb | [\\
| a \rightarrow a | A \\
| b \rightarrow b | B \\
Ab \rightarrow aA \\
ba \rightarrow bA \\
Ba \rightarrow aB \\
Bb \rightarrow bB \\
A] \rightarrow | a \\
B] \rightarrow | b \\
|] \rightarrow \epsilon
\]

(a) Determine if \(L(G) = L \) where \(L = \{ww : w \in \{a, b\}^*\} \) or not.

If \textit{yes}, explain carefully the rules of \(G \) (their specific roles or purpose, etc.).

If \textit{not}, show a counterexample of either \(w \not\in L \) (for which \(S \Rightarrow w \)) or \(w \in L \) (for which \(S \Rightarrow w \) does not hold); and then, show how to fix \(G \) so it generates \(L \).

(b) Adapt \(G \) to obtain a grammar for \(L = \{www : w \in \{a, b\}^*\} \). Explain your rules carefully.