Regular Languages FTW?

(1) \(L = \{a^N b^N \mid N > 0\} \) // equality

(2) \(L = \{a^N b^{2N} \mid N > 0\} \) // multiplication

(3) \(L = \{a^N b^M c^{(N+M)} \mid N, M > 0\} \) // addition

Not Regular
No DFA “decides” these languages
Turing Machines

A machine M that consists of:

- an alphabet Σ
- a finite set of control states, including:
 - start state
 - accepting state(s)
- transitions between states
- an infinitely large tape, which can be read or written
 - the tape is akin to memory
- a current location on the tape called the “read/write head”

Given a string $w \in \Sigma^*$, M accepts w if consuming w causes M to terminate in an accepting state.
can move left or right
What does this machine do?
$\Sigma = \{a, b\}$ \hspace{1cm} $L = \{a^N b^N\}$