What is this?

- A fundamental result having to do with computability and programming languages.
- Another technique that can be used to get further undecidability results.
- It was introduced as a theorem by Kleene in 1938.
Recursion Theorem: Informal Statement

- A program can have access to its own description (code).
Recursion Theorem: Formal Statement

• For any computable function \(t \) of 2 arguments, there is a computable function \(r \) (of 1 argument) such that

\[
\forall w \ r(w) = t(<R>, w)
\]

• where \(<R> \) is a description of the program for function \(r \).
Another undecidability proof for A_{TM}

- This proof uses **self-reference** rather than **diagonalization**, as in our first proof.

- Suppose there is a TM that decides A_{TM}, to get contradiction.
Another undecidability proof for A_{TM}

- Suppose H is a TM that decides A_{TM}.

- Construct a machine N that behaves as follows on input x:
 - Run H on $<N, x>$. If H accepts, reject. If it rejects, accept.

- What will N do with input $<N>$?
 - If H accepts $<N, <N>>$, then N rejects $<N>$.
 - If H rejects $<N, <N>>$, then N accepts $<N>$.

 - But H accepts $<N, <N>>$ says that N accepts $<N>$.
 - And H rejects $<N, <N>>$ says that N does not accept $<N>$.
 - Either way, we contradict the supposition of such an H.

Picture of N

(N’s description)
Functional description

• $H(<M, x>) = M(x)$
 so $\neg H(<M, x>) = \neg M(x)$

• $N(x) = \neg H(<N, x>)$

• So $N(<N>)$

 $= \neg H(<N, <N>>)$ constr. of N

 $= \neg N(<N>)$ meaning of \neg
An Application of the Recursion Theorem (Sipser)

- The **length** of the description of a machine \(<M>\) is the number of symbols in \(<M>\).

- \(M\) is called **minimal** if there is no equivalent machine having a shorter description.

- **Theorem:**

 The language \(\{<M> \mid M \text{ is a minimal TM} \}\) is not recognizable.
Proof

- Assume that \(L = \{ <M> \mid M \text{ is a minimal TM} \} \) is recognizable. Then \(L \) is enumerated by some Turing machine \(E \).

- Construct the following TM, call it \(C \), which, on input \(w \):
 - Obtain the description \(<C> \) of this machine.
 - Using \(E \), begin enumerating \(L \) until a machine \(D \) appears such that \(<D> \) is longer than \(<C> \). (This must happen.)
 - Behave as \(D \) on \(w \).

- \(C \) is equivalent to \(D \) by construction.

- But \(<D> \) is longer than \(<C> \), therefore \(D \) cannot be minimal after all. It shouldn’t be in the enumeration. This contradicts the assumption that \(E \) enumerates only minimal machines.
What is key in the previous proof?

- It relied on the ability of a machine to use its own description inside its own program.

- Is this strange?
 - An interpreter could use its own source code file, for example, and interpret that code.

- Ok, but is it strange for TMs?
Self-Printing Machines

• Even if a machine is not given a handle to its own code on its tape at the outset, there are ways for it to construct it.

• Such programs are now called “Quines”. (Would Quine like this?)
Willard Van Orman Quine (1908 - 2000)
A Java Quine (all one line. 34 is “)
Quines in C and C++ (authors unknown)

C Quine using numeric codes:

```c
char f[] = "%c%c%s%c;"%cmain() {printf(f,10,34,f,34,10,10);}%c
main() {printf(f,10,34,f,34,10,10);}
```

This C++ Quine does not use numeric codes:

```cpp
#include <iostream>
define a(b) std::cout<<"#include <iostream>\n#define a(b) "<<#b<<"\nmain(){a("<<#b<<");}"
main(){a(std::cout<<"#include <iostream>\n#define a(b) "<<#b<<"\nmain(){a("<<#b<<");}";
```
Example: A rex Quine constructed by a Pomona College Student

```
dd="d"; e=""; ee="e"; f=""; ff="f"; g="\n"; gg="g"; nn="n";

print(
    aa,c, b, a,a,b, f,
    aa,aa, c,b,aa,b,f,g,bb,c,b,
    a,b,b,f,bb,bb,c,b,bb,b,f,g,
    cc,c,b,c,b,f, cc,cc,c,b,cc,
    b, f,g,dd ,c,b,
    d, b,f , g,g,
    dd, dd, c,b,
    dd, b,f , g,ee
    .c,b ,e, b,f,
    ee, ee, c,b,
    ee,b,f, g,ff,c, b,f,
    b,f,ff,ff,c,b,ff,b,f, g,gg,
    c,b,a ,nn,b,
    f,gg .gg,c,b,
    gg,b,f, g,nn,nn,c
    ,b,nn,b, f,g,g,d,g);
```

continued next col.

```
dd="d"; e=""; ee="e"; f=""; ff="f"; g="\n"; gg="g"; nn="n";

print(
    aa,c, b, a,a,b, f,
    aa,aa, c,b,aa,b,f,g,bb,c,b,
    a,b,b,f,bb,bb,c,b,bb,b,f,g,
    cc,c,b,c,b,f, cc,cc,c,b,cc,
    b, f,g,dd ,c,b,
    d, b,f , g,g,
    dd, dd, c,b,
    dd, b,f , g,ee
    .c,b ,e, b,f,
    ee, ee, c,b,
    ee,b,f, g,ff,c, b,f,
    b,f,ff,ff,c,b,ff,b,f, g,gg,
    c,b,a ,nn,b,
    f,gg .gg,c,b,
    gg,b,f, g,nn,nn,c
    ,b,nn,b, f,g,g,d,g);
```
Applications of Quines

- Entertainment of self and others

- Computer viruses, worms, and other forms of mal-ware
 - To protect against these, it is important to know their characteristics and methods of operation.

- Artificial life
Recursion Theorem Formalized

- If R is a Turing machine computing a binary function $R(A, B)$, then there is a Turing machine S computing a unary function such that:

$$S(A) = R(A, <S>)$$

where $<S>$ is the description of S itself.
From Programming Languages

- Compute a recursively-defined function **without actually using recursion**.

- This is not so hard if we allow **higher-order functions** (functions that take functions as arguments and return functions as results). These are sometimes called “functionals”.
Example

- Factorial:

\[\text{fac}(N) = \begin{cases}
1 & \text{if } N < 2 \\
N \times \text{fac}(N-1) & \text{otherwise}
\end{cases} \]

- How to do this \textit{without} recursion?
Functionalize the definition

- “Factorial” functional

\[f(G)(N) = \begin{cases}
 1 & \text{if } N < 2 \\
 N \times f(G)(N-1) & \text{otherwise}
\end{cases} \]

- Notice the above definition is \textit{not recursive}.

- \(G \) could be any function argument.
Functionalize the definition

- \(f(G)(N) = N < 2 \ ? 1 : N \times (G(G)(N-1)) \)
- \(G \) could be any function argument.
- \(f(f) \) makes sense:
 - \(f(f)(N) = N < 2 \ ? 1 : N \times (f(f)(N-1)) \)
- So \(f(f) \) achieves the same effect as fac.
- We might say \(f(f) \) “is” fac?
- It is more correct to say “fac is a fixed point of \(f \)” (fac satisfies the functional equation when substituted for \(G \)).
- In fact (oops), fac is the **least fixed point** of functional \(f \).
f(f) makes sense

• \(f(f)(N) = N < 2 \ ? 1 : N \times f(f)(N-1) \)

• \[
\begin{align*}
 f(f)(4) &= 4 \times f(f)(3) \\
 &= 4 \times 3 \times f(f)(2) \\
 &= 4 \times 3 \times 2 \times f(f)(1) \\
 &= 4 \times 3 \times 2 \times 1
\end{align*}
\]
Least Fixed Point?

- Least in this case means “least defined”.

- That is, it is the fixed point that makes the fewest assumptions consistent with the definition of f.

- In the case of f, fac is the *only* fixed point.

- In other cases, there can be more than one, with varying degrees of defined-ness.
Example Realization (in rex)

- 1 rex > f(G)(N) = N < 2 ? 1 : N*G(G)(N-1);
- 2 rex > f(f)(10);
- 3628800