Background

• With every DFA $M = (Q, \Sigma, \delta, q_0, F)$ there is an associated language $L(M)$ defined by

$$L(M) = \{ x \in \Sigma^* \mid \delta(q_0, x) \in F \}$$

• $L(M)$ is the set of strings that take M from its initial state q_0 to some accepting state (element of F).
Generalizing

- With any state q of M we can associate a language $L(q)$:
 \[
 L(q) = \{x \in \Sigma^* \mid \delta(q, x) \in F\}
 \]
- $L(q)$ is the set of strings that take M from state q to some accepting state (element of F).
- Therefore $L(M) = L(q_0)$.
State Equivalence

- Two states will be called equivalent \(q \equiv q' \)
 iff their languages are the same:
 \[L(q) = L(q') \]
Another Viewpoint

• Suppose $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA.
• Recall the extended $\delta : Q \times \Sigma^* \rightarrow Q$.

• Define $\eta : Q \times \Sigma^* \rightarrow \{0, 1\}$ by
 $\forall x \in \Sigma^*$
 $\eta(q, x) = 1$ if $\delta(q, x) \in F$
 0 otherwise

• Then $q \equiv q'$ iff $\forall x \in \Sigma^*$ $\eta(q, x) = \eta(q', x)$
Example of State Equivalence

Below, $a \equiv c$ and $b \equiv d$.

$q \equiv q'$ iff $\forall x \in \Sigma^*$ $\eta(q, x) = \eta(q', x)$
Why we might care

- Equivalent but distinct states represent **redundancy**.

- The presentation of the DFA might be
 - more understandable,
 - easier to analyze, or
 - less expensive to implement (e.g. in hardware) **without redundancy**.
Redundancy Removed

- The second DFA is a simplified version of the first.
Machine Equivalence

- There is no need for q and q' to be in the same machine.

- Two DFAs are equivalent iff their initial states are equivalent:

 $$L(q_0) = L(q'_0)$$
Machine Equivalence Example

$L(a) = L(e) = (\{0\} \cup \{1\}\{1\}^*\{0\})^*$
State Equivalence deserves its name

- State equivalence is an equivalence relation. It is:

 Reflexive: \(\forall q \ (q \equiv q) \)

 Symmetric: \(\forall q \forall q' \ (q \equiv q' \rightarrow q' \equiv q) \)

 Transitive: \(\forall q \forall q' \forall q'' \ ((q \equiv q' \land q' \equiv q'') \rightarrow q \equiv q'') \)

Why? All are based on the definition of \(\equiv \) in terms of language equality:

- If \(L(q) = L(q') \) then \(L(q') = L(q) \).
- If \(L(q) = L(q') \) and \(L(q') = L(q'') \), then \(L(q) = L(q'') \).
Partitions

- A **partition** of a set Q is a set of subsets (called “blocks”) of Q such that:
 - No block is empty.
 - No two blocks overlap.
 - The union of the blocks is all of Q.

- Example:
 - Suppose $Q = \{a, b, c, d, e, f\}$
 - These are examples of partitions of Q:
 - $\{\{a, b\}, \{c, d, e\}, \{f\}\}$
 - $\{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}\}$
 - $\{\{a, b, c, d, e, f\}\}$
Every partition determines an equivalence relation.

Two elements are defined to be equivalent iff they are in the same block.

$q \equiv q' \iff \exists B \in P \ (q \in B \land q' \in B)$

Example: $P = \{\{a, b\}, \{c, d, e\}, \{f\}\}$
The equivalence relation is: $a \equiv b$, $c \equiv d \equiv e$, f.
Partition vs. Equivalence Relation

• Every equivalence relation determines a partition.
• The partition determined by \equiv is given by $
\{\{q' \mid q' \equiv q\} \mid q \in Q}\}.$
• Two elements are in the same block iff they are equivalent.
• Example: $a \equiv b \equiv c, d \equiv e \equiv f$ determines

$$P = \{\{a, b, c\}, \{d, e, f\}\}$$
Summary

• Equivalence Relations and Partitions are two different ways of viewing the same thing.

• The blocks of a partition corresponding to an equivalence relation are called the equivalence classes of the relation.
Refinement of Partitions

• Consider two partitions \(P \) and \(P' \) on the same set. We say that \(P \) refines \(P' \) (and write \(P \leq P' \)) iff every block of \(P \) is wholly contained in a block of \(P' \).

• Examples:
 - \(\{\{a, b\}, \{c, d, e\}, \{f\}\} \leq \{\{a, b, f\}, \{c, d, e\}\} \)
 - \(\{\{a, b, f\}, \{c, d, e\}\} \leq \{\{a, b, c, d, e, f\}\} \)
 - \(\{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}\} \leq \{\{a, b\}, \{c, d, e\}, \{f\}\} \)
Refinement vs. Containment

- Let P and P' be two partitions on the same set. Let \equiv and \equiv' be the corresponding equivalence relations.

- P refines P' iff $\equiv \subseteq \equiv'$, where containment means as a set of pairs.

- That is $q \equiv q' \rightarrow q \equiv' q'$
Example

- \{\{a, b\}, \{c, d, e\}, \{f\}\} \subseteq \{\{a, b, f\}, \{c, d, e\}\}

- As set of pairs:
 \{(a, b), (c, d), (d, e), (c, e),
 (b, a), (d, c), (e, d), (e, c),
 (a, a), (b, b), (c, c), (d, d), (e, e), (f, f)\}
 \subseteq
 \{(a, b), (a, f), (b, f), (c, d), (c, e),
 (b, a), (f, a), (f, b), (d, c), (e, c),
 (a, a), (b, b), (c, c), (d, d), (e, e), (f, f)\}
Proper Refinement

- $P < P'$ (P properly refines P') means $P \leq P'$ and $P \neq P'$.

- This is equivalent to proper containment as a set of pairs.

 $\equiv \subset \equiv'$ means $\equiv \subseteq \equiv'$ and $\equiv \neq \equiv'$
Approaching State Equivalence by Successive Approximations

• Define $\Sigma_k = \{x \in \Sigma^* \mid |x| \leq k\}$ (all strings of k or fewer letters).
 Note: $\Sigma^* = \bigcup\{\Sigma_k \mid k \geq 0\}$

• Define $\textbf{k-equivalence}$ as follows:

 $q \equiv_k q'$

 iff $\forall x \in \Sigma_k \ \eta(q, x) = \eta(q', x)$

• In other words, two states are k-equivalent iff every string of length k or less takes both to an accepting state or neither to an accepting state.
Repeat of the earlier definition of η for reference

- Suppose $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA.
- Recall the extended $\delta: Q \times \Sigma^* \rightarrow Q$.

Define $\eta: Q \times \Sigma^* \rightarrow \{0, 1\}$ by

\[
\forall x \in \Sigma^* \\
\eta(q, x) = 1 \text{ if } \delta(q, x) \in F \\
0 \text{ otherwise}
\]

- Then $q \equiv q'$ iff $\forall x \in \Sigma^* \ \eta(q, x) = \eta(q', x)$
0-equivalence

• From previous definition, \(q \equiv_0 q' \)

\[\text{iff } \forall x \in \Sigma_0 \quad \eta(q, x) = \eta(q', x) \]

• But there is only one string of length 0, namely \(\varepsilon \), and \(\delta(q, \varepsilon) = q \), therefore

\[q \equiv_0 q' \quad \text{iff } [q \in F \iff q' \in F] \]

i.e. both are accepting or neither is.
Equivalence is k-equivalence for all k

- $q \equiv q'$ is the same as
 \[\forall k \geq 0 \ (q \equiv_k q') \]

- Reason: Recall that $q \equiv q'$ says
 \[\forall x \in \Sigma^* \ \eta(q, x) = \eta(q', x) \]
 whereas $q \equiv_k q'$ says
 \[\forall x \in \Sigma_k \ \eta(q, x) = \eta(q', x) \]

 But $\Sigma^* = \bigcup \{ \Sigma_k | k \geq 0 \}$.
More Facts about \equiv_k

- $\forall k \geq 0 \ [(q \equiv_{k+1} q') \to (q \equiv_k q')]$
- This is obvious since $\Sigma_k \subseteq \Sigma_{k+1}$.
- Also $(q \equiv_k q') \to \forall i \leq k \ (q \equiv_i q')$
 (by downward induction)
Less Obvious Fact about \equiv_k

- $\forall k \geq 0$

 \[
 [(q \equiv_0 q') \land \forall \sigma \in \Sigma [\delta(q, \sigma) \equiv_k \delta(q', \sigma)] \]

 $\rightarrow (q \equiv_{k+1} q')$

- In other words, two states are $k+1$ equivalent provided
 - they are 0-equivalent and
 - for every input letter σ, their pair of next states are k-equivalent.
Corollary (replacing 0 with k)

- $\forall k \geq 0$

 $[(q \equiv_k q') \land \forall \sigma \in \Sigma [\delta(q, \sigma) \equiv_k \delta(q', \sigma)]$

 $\rightarrow (q \equiv_{k+1} q')]$

[from previous slide, because $(q \equiv_k q') \rightarrow (q \equiv_0 q')]$

- In other words, two states are $k+1$ equivalent provided they are k-equivalent and for every input letter σ, their pair of next states are k-equivalent.
\equiv_{k+1} in Pictures

$q \xrightarrow{\sigma} \delta(q, \sigma) \xrightarrow{x} q' \equiv_0$

$q' \xrightarrow{\sigma} \delta(q', \sigma) \xrightarrow{x} q' \equiv_k$

same outputs (both accepting or neither)
same outputs pairwise all along the way
Example: \(a \equiv_{2+1} c \)
Partitioning Algorithm for Computing \equiv_{k+1} from \equiv_k

- Given that \equiv_k is known, consider each pair of states such that $q \equiv_k q'$:

 - Check for each $\sigma \in \Sigma$ whether or not $\delta(q, \sigma) \equiv_k \delta(q', \sigma)$.

- If the answer is always yes, then $q \equiv_{k+1} q'$, otherwise not $q \equiv_{k+1} q'$.
Example: Computing \equiv_k for various k

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3 accepting</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4 accepting</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

- Use partition P_k to represent \equiv_k
 - $P_0 = \{\{3, 4\}, \{1, 2, 5, 6\}\}$
 - $P_1 = \{\{3, 4\}, \{1, 6\}, \{2, 5\}\}$
 - $P_2 = \{\{3, 4\}, \{1, 6\}, \{2, 5\}\}$
Stopping Criterion (proof by algorithm)

• Suppose $\equiv_{k+1} = \equiv_k$ (i.e. $P_{k+1} = P_k$).

• Then $\equiv_k = =$
 (i.e. equivalence \equiv is the same as k-equivalence).

• Proof: Consider the partitioning algorithm for computing \equiv_{k+1} from \equiv_k. If the result \equiv_{k+1} is the same as \equiv_k, then the result of computing \equiv_{k+2} will be the same as \equiv_{k+1}. By induction, \equiv_r will be the same as \equiv_{k+1}. Hence \equiv is \equiv_k.
Iterated Partitioning Algorithm for State Equivalence

- Given a DFA:
- Compute P_0 by dividing into accepting and non-accepting states.
- Iteratively compute P_1, P_2, ... using the partitioning algorithm until $P_k = P_{k+1}$.
- The last P_k is the partition corresponding to state equivalence.
Try this:
Compute the maximal partition

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a initial</td>
<td>b</td>
<td>f</td>
</tr>
<tr>
<td>b</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>c accepting</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>h</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>e</td>
</tr>
<tr>
<td>h</td>
<td>g</td>
<td>c</td>
</tr>
</tbody>
</table>
Observation about Partitioning

• Consider P_k representing \equiv_k.

• Then $\forall k \ P_{k+1} \leq P_k$, i.e. P_{k+1} refines P_k.

• Proof: In computing P_{k+1} from P_k, two states in a block of P_k can separate in P_{k+1}, but they never merge.
Termination Proof for Iterative Partitioning Algorithm

- Consider iteratively computing P_k for increasing k starting with P_0.
- **Claim**: For any DFA, an iteration must be reached for which $P_k = P_{k+1}$ (the stopping criterion).
- **Proof**: We already observed $\forall k \ P_{k+1} \leq P_k$. Furthermore, either
 - $P_{k+1} < P_k$ (*strict* refinement) or
 - $P_{k+1} = P_k$.

 - If the latter, we can stop. If the former, then $|P_{k+1}| > |P_k|$ because at least one block must split if we don’t have equality.

- **A partition cannot split more times than the number of states**, so eventually there can be no more strict refinement.
Bound on the number of iterations of the iterated partitioning algorithm

- For an n-state DFA, the number of iterations required is **at most** n-2.
- Consider P_0. If it has only **one block**, then all states are accepting or all states are rejecting. Therefore all states are equivalent.
- So in order for another iteration required, P_0 would need at least **two blocks**: $|P_0| \geq 2$.
- Beyond P_0, another iteration is required only if P_0 splits, meaning that the **number of blocks increases by at least one**.
- From $|P_0| \geq 2$, we see that $|P_1| \geq 3$, and in general: If $P_k \neq P_{k+1}$ then $|P_k| \geq k+2$ blocks.
Illustration

- Consider a 5-state machine.
- If \(P_0 = \{\{1, 2, 3, 4, 5\}\} \) we are done; all states are equivalent.
- Otherwise \(P_0 = \{\{1, 2\}, \{3, 4, 5\}\} \) say and \(|P_0| \geq 2 \).
- Then \(P_1 = \{\{1, 2\}, \{3\}, \{4, 5\}\} \) say and \(|P_1| \geq 3 \).
- ...
- \(P_3 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\} \), \(|P_3| \geq 5 \).
Corollary

- Two states of an n-state DFA are equivalent iff they are (n-2)-equivalent.
DFA Minimization

- Given that \equiv has been computed for M, we can define a minimal equivalent DFA M' as follows:
 - The **states** of M' are the equivalence classes of \equiv, i.e. the blocks of the final partition P_k.
 - The **initial state** of M' is the block containing the initial state of M.
 - The **accepting states** of M' are the blocks that contain accepting states of M.
 - The **transition function** δ' for M' is given by:
 $$\forall \sigma \in \Sigma \quad \delta'([q], \sigma) = [\delta(q, \sigma)]$$
 where $[q]$ means the equivalence class of q.
Minimization Example

- For the previous machine on the left below, we computed the maximum partition to be \{\{3, 4\}, \{1, 6\}, \{2, 5\}\}.
- The minimal equivalent machine is shown on the right.

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 initial</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3 accepting</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4 accepting</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M'</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1, 6} initial</td>
<td>{1, 6}</td>
<td>{3, 4}</td>
</tr>
<tr>
<td>{2, 5}</td>
<td>{2, 5}</td>
<td>{1, 6}</td>
</tr>
<tr>
<td>{3, 4} accepting</td>
<td>{3, 4}</td>
<td>{2, 5}</td>
</tr>
</tbody>
</table>
Try this: Minimize this DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a intial</td>
<td>b</td>
<td>f</td>
</tr>
<tr>
<td>b</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>c accepting</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>h</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>e</td>
</tr>
<tr>
<td>h</td>
<td>g</td>
<td>c</td>
</tr>
</tbody>
</table>
Infinite-State Acceptors

- Some of the previous ideas make sense even if the state set is infinite.

- For example, equivalence of states, state equivalence classes, and partitions are still meaningful.

- Useful **insights** can be gained from thinking about infinite-state acceptors.
Minimizing an Infinite-State Acceptor

- Suppose we have an infinite-state acceptor and we could somehow compute the equivalence relation.

- Consider the number of equivalence classes, which is called the rank of the relation.

- If the rank happens to be finite, we could still create an equivalent DFA in principle.

- If the rank is infinite, there is no equivalent DFA (remember F stands for “finite”), because we cannot merge non-equivalent states together.
Example

- Suppose the infinite state set is \{0, 1, 2, 3, \ldots\}.

- If the equivalence partition is \{\{0, 2, 4, \ldots\}, \{1, 3, 5, \ldots\}\} then we have finite rank and can create an equivalent DFA.

- If the equivalence partition is \{\{0\}, \{1, 2\}, \{3, 4, 5\}, \{6, 7, 8, 9\}, \ldots\} there is no equivalent DFA.
Viewing a Language as an Acceptor

- Here is way to define an infinite-state acceptor \((Q, \Sigma, \delta, q_0, F)\) for any language \(L\) over \(\Sigma\).
- Let \(Q = \Sigma^*\).
- Define \(\delta:Q \times \Sigma \rightarrow Q\) by \(\delta(x, \sigma) = x\sigma\).
- Define \(q_0 = \varepsilon\).
- Define \(F = L\).
- Call this the Language Machine for \(L\).
Example

- Suppose $L = \{x \in \{0, 1\}^* \mid x \text{ contains exactly one 1}\}$
- We can depict the acceptor as an infinite tree.
Equivalence in the Language Machine

- Equivalence can be defined in the usual way:
 \[q \equiv q' \text{ iff } \forall z \in \Sigma^* \; \eta(q, z) = \eta(q', z) \]
 where recall that
 \[\forall z \in \Sigma^* \]
 \[\eta(q, z) = 1 \text{ if } \delta(q, z) \in F \]
 \[0 \text{ otherwise} \]

- But here we have **strings as states**, so we rephrase using \(x\) and \(y\) instead of \(q\) and \(q'\):
 \[\forall x, y \in \Sigma^* \]
 \[x \equiv y \text{ iff } \forall z \in \Sigma^* \; xz \in F \iff yz \in F \]

But \(F = L \) here, so (next slide)
Myhill-Nerode Theorem

• \(\forall x, y \in \Sigma^* \)
 \[x \equiv y \text{ iff } \forall z \in \Sigma^* \ xz \in L \iff yz \in L \]

• The relation \(\equiv \) is commonly called the **Myhill-Nerode relation** for the language \(L \).

• Implicit in our discussion then is: **\(L \) is a finite-state language iff \(\equiv \) has finite rank** (Myhill-Nerode theorem).

http://en.wikipedia.org/wiki/Myhill-Nerode_theorem
Showing a Language is Not Finite-State

- There are two common ways to show that a language is not finite-state:
 - **Pumping Lemma**: which provides a necessary condition to finite-state, so show this condition is violated.
 - **Myhill-Nerode Theorem**: which provides a necessary and sufficient condition.
Pumping Lemma

- Please read about the Pumping Lemma in section 1.4 of Sipser.

- It is only useful for showing a language is not regular, not that it is regular.

- I often find the Myhill-Nerode theorem easier for reasoning, and it can be used to show a language is regular or non-regular.
Using the Myhill-Nerode Theorem to Show a Language is Not Finite-State

• If \(L \) is finite-state, the relation \(x \equiv y \) iff
 \(\forall z \in \Sigma^* \, xz \in L \iff yz \in L \) must have finite rank.

• To show that the rank is not finite, we only need to establish that there is an infinite set of strings, no two of which are equivalent.
Non-equivalent Strings

- Equivalence is $x \equiv y$ iff
 $\forall z \in \Sigma^* \ (xz \in L \leftrightarrow yz \in L)$

- Therefore **Non-**Equivalence is
 $\neg \forall z \in \Sigma^* \ (xz \in L \leftrightarrow yz \in L)$

which is, by DeMorgan’s Law
$\exists z \in \Sigma^* \ \neg(xz \in L \leftrightarrow yz \in L)$

which is equivalent to

$$\exists z \in \Sigma^* \ [(xz \in L \land yz \notin L) \lor (yz \in L \land xz \notin L)]$$
Distinguishing Strings

- Previously, we showed that two strings $x, y \in \Sigma^*$ are **not** equivalent w.r.t. L provided there is a $z \in \Sigma^*$ such that

$$ (xz \in L \land yz \notin L) \lor (yz \in L \land xz \notin L) $$

- z is said to **distinguish** x from y, and be a **distinguishing string** for the pair x, y.

- x and y are called **distinguishable**.
Distinguishing Strings

• If two strings x, y have a distinguishing string, then x and y must take the initial state of any acceptor for the language to two different states.

• If they did not, then applying the distinguishing string to the resulting state would show a contradiction.

• This is true for finite- and infinite-state acceptors of the language.
Example

Consider the language \(\{0^n1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \ldots\} \).
We claim this language is not finite-state.

We can identify an infinite set of strings, such that any pair in the set can be distinguished.
Consider two strings 0^m and 0^n, where $m < n$. These strings are distinguishable by 1^m, as

\[
0^m1^m \in L \land 0^n1^m \notin L
\]

There is an infinite set of such strings 0^m for each natural number m, each distinguishable from the others.

Therefore this language is not finite-state.
Example

Consider the language \(L = \{(01)^n \mid n \geq 0\} \)
= \{\varepsilon, 01, 0101, 010101, \ldots\}.
We claim this language \emph{is} finite-state.

Consider three sets:

L, \(L\{0\} \), and Other (everything else)

Claim: any pair of strings from one of these two sets are indistinguishable.
\{(01)^n \mid n \geq 0\} \text{ Example Continued}

- **x, y \in L:** Consider any z.
 - If z = 0w for some w, then x_0 and y_0 are both in L\{0\} and w does not distinguish them.
 - If z = 1w, then x_1 and y_1 are both in Other, and w does not distinguish them.
 - Either way, z does not distinguish x, y.

- **x, y \in L\{0\}:** Consider any z.
 - If z = 1w for some w, then x_1 and y_1 are both in L and w does not distinguish them.
 - If z = 0w, then x_0 and y_0 are both in Other, and w does not distinguish them.
 - Either way, z does not distinguish x, y.

- **x, y \in \text{Other}:** Any z takes them both to Other.
Diagram

- This diagram summarizes the preceding argument. (Does it look familiar?)
The Minimal Acceptor for *Any* Language

- Analogous to constructing the minimal equivalent DFA, the minimal acceptor for any language L consists of using the Myhill-Nerode equivalence classes as states.
- For any string x, let $[x]$ denote its equivalence class.
- The transitions of the minimal acceptor are defined by:
 $\forall x \in \Sigma^* \ \forall \sigma \in \Sigma \ \delta([x], \sigma) = [x\sigma]$
- The accepting states are defined by
 $F = \{ [x] \mid x \in L \}$
- The initial state is defined as $[\varepsilon]$.
Example: Minimal acceptor for \(\{0^n1^n \mid n \geq 0\} \)

- No two strings \(0^n \) for different \(n \) are equivalent.
- Is there any other string that is equivalent to \(0^n \)?

 i.e. is there another \(x \) such that
 \[\forall z \ [0^n z \in L \iff xz \in L] \]

- Such an \(x \) cannot start with 0, because \(1^n \) would distinguish it from \(0^n \).
- Similarly, \(x \) cannot start with 1, because \(\varepsilon \) would distinguish it from \(0^n \).
- Thus there is no such \(x \).
Example: Minimal acceptor for \(\{0^n1^n \mid n \geq 0\} \), continued

- Therefore each string \(0^n \) is in an equivalence class by itself.

- Now consider strings of the form \(0^n1^m \) where \(m < n \). Here the situation is different. For example \(0^51^3 \equiv 0^61^4 \).

- Similarly, any two strings \(0^m1^n \) with the same value of \(m-n \) are equivalent.

- Continuing this type of reasoning leads to a minimal-state acceptor diagrammed on the next page.
Congruence

- The relation \equiv_L has the additional property of being a **congruence**:

 $$x \equiv_L y \text{ implies } \forall z \in \Sigma^* (xz \equiv_L yz).$$

- By induction, a necessary and sufficient condition for \equiv_L to be a congruence is:

 $$x \equiv_L y \text{ implies } \forall \sigma \in \Sigma (x\sigma \equiv_L y\sigma).$$
Proof that \equiv_L has the congruence property.

- $x \equiv_L y$ means $\forall z \in \Sigma^* (xz \in L \iff yz \in L)$.

- We want to show this implies $\forall \sigma \in \Sigma (x\sigma \equiv_L y\sigma)$.

- Suppose $\forall z \in \Sigma^* (xz \in L \iff yz \in L)$.
- Let $\sigma \in \Sigma$. We need to show $\forall w \in \Sigma^* ((x\sigma)w \in L \iff (y\sigma)w \in L)$.
- Let $w \in \Sigma^*$. Then using $\forall E$ from the supposition, $x(\sigma w) \in L \iff y(\sigma w) \in L$.
 Furthermore $x(\sigma w) = (x\sigma)w$ and $y(\sigma w) = (y\sigma)w$.
 The result follows from $\forall I$.

Congruence Pictured

Applying the same input sequence to congruent states yields congruent states.

Partition of the congruence
Language in terms of Equivalence Classes

- Consider a finite-state language.
- Its Myhill-Nerode equivalence relation must be finite-rank (finite # of classes).
- The language itself must be the union of some of the equivalence classes.

 e.g. $W \cup X$ could be the language
Language in terms of Equivalence Classes

• Is not generally the case that the language is just one of the equivalence classes.

• That would be equivalent to requiring a DFA have only one accepting state.