Housekeeping: Reduced Clause Sets

- A clause set is **reduced** provided:
 - No literal occurs multiple times in any clause.
 - $p \lor \neg q \lor p$ is disallowed in a reduced set.
 - No clause contains a literal and its negation.
 - $p \lor q \lor \neg p$ is disallowed in a reduced set.

- Any clause set S is equivalent to a reduced set $\text{reduce}(S)$:
 - Replace multiple occurrences of a literal with a **single occurrence** of the literal.
 - **Drop** any clauses containing a literal and its negation.
 (Such clauses are equivalent to T, and do thus do not affect satisfiability of the set of clauses.)
 - Replace multiple occurrences of a clause (as a set) with a single occurrence.
reduce example

\[
\text{reduce(}\{p \lor \neg q \lor p, \\
p \lor q \lor \neg p \lor q\}\text{)} = \\
\{p \lor \neg q\}
\]
Resolution Method

- **Input**: A reduced set of clauses.

- **Output**: A set of clauses equivalent to the input set, such that the original set is unsatisfiable iff the final set contains the empty clause \bot.

- There is no valuation that satisfies \bot (much less \bot together with other clauses).
How Resolution Works

- Do Repeatedly, until no further steps can be taken:
 - From the set of clauses, pick a pair from which a new clause, called the “resolvent”, can be created. (Must resolve the pair to find this out.)

 - Add the resolvent to the set.

 - If \(\bot \) is ever added to the set, stop. The original set of clauses is unsatisfiable.

- Conversely, if the original set of clauses is unsatisfiable, it is possible to eventually derive \(\bot \).
What is the Resolvent?

- Suppose \(p \) is a proposition symbol.

- If the set contains clauses of both forms
 - \(p \lor \varphi \)
 - \(\neg p \lor \psi \)

- where \(\varphi \) and \(\psi \) are clauses (either could be empty), then the resolvent is the reduced version of
 \[\varphi \lor \psi. \]

- \(p \) and \(\neg p \) are said to be “clashing” literals.
Resolution as a Deduction Rule

\[\frac{p \lor \varphi}{\neg p \lor \psi} \]

\[\varphi \lor \psi \] (in reduced form)

where \(p \) is any proposition symbol and \(\varphi \) and \(\psi \) are clauses (possibly empty).
Example of Resolvents

- Consider the clauses
 - $p \lor \neg q \lor \neg s$
 - $q \lor r \lor \neg s$

- A resolvent (based on literals q, $\neg q$) is:
 - $p \lor r \lor \neg s$
Example of Resolvents

• Consider the clauses
 • \(p \lor r \)
 • \(\neg r \)

• The resolvent is:
 • \(p \)
Example of Resolvents

• Consider the clauses
 • p
 • $\neg p$

• Since p and $\neg p$ occur in different clauses, the resolvent is:
 • \bot
Example of Resolvents

- Consider the clauses
 - $p \lor \neg q \lor r$
 - $q \lor \neg r \lor \neg s$
- One resolvent (based on literals $q, \neg q$) is:
 - $p \lor r \lor \neg r \lor \neg s$
- Another (based on literals $r, \neg r$) is:
 - $p \lor q \lor \neg q \lor \neg s$
- Both of these would be **dropped** in reducing, however, since each contains a literal and its negation.
Resolution Algorithm

• Start with a set S of reduced clauses.

• while S does not contain \bot and the following step adds something new to S:

 • Add to S the resolvent R of any two clauses such that R is not already in S and the resolvent does not contain complementary literals.

• The original S is unsatisfiable iff \bot is in S.
Unit Clauses

- A clause with exactly one literal is called a **unit clause**.

- The ultimate step in resolving to \bot will be to resolve two unit clauses.

- Resolving a unit clause with a clause having $n > 0$ literals results in a clause with fewer than n literals.
Unit Preference Strategy

- Preferring unit clauses is a good heuristic.
Example 1 (Highlighting unit clauses)

- $S = \{p \lor \neg q, \ q \lor r, \ \neg p, \ \neg r\}$
 resolve $p \lor \neg q$ with $\neg p$, adding $\neg q$ to S.

- $S = \{p \lor \neg q, \ q \lor r, \ \neg p, \ \neg r, \ \neg q\}$
 resolve $q \lor r$ with $\neg q$, adding r to S.

- $S = \{p \lor \neg q, \ q \lor r, \ \neg p, \ \neg r, \ \neg q, \ r\}$
 resolve $\neg r$ with r adding \bot to S.

- Stop $\bot \in S$.

- The original S is unsatisfiable, as $\bot \in S$.

Example 2

- \(S = \{p \lor \neg q, \ q \lor r, \ \neg p\} \)
 Resolve \(p \lor \neg q \) with \(\neg p \), adding \(\neg q \) to \(S \).

- \(S = \{p \lor \neg q, \ q \lor r, \ \neg p, \ \neg q\} \)
 Resolve \(q \lor r \) with \(\neg q \), adding \(r \) to \(S \).

- \(S = \{p \lor \neg q, \ q \lor r, \ \neg p, \ \neg q, \ r\} \)
 Resolve \(p \lor \neg q \) with \(q \lor r \), adding \(p \lor r \) to \(S \).

- \(S = \{p \lor \neg q, \ q \lor r, \ \neg p, \ \neg q, \ r, \ p \lor r\} \)
 Stop. No new resolvents are possible. The original set is satisfiable, as \(\bot \notin S \).
Soundness: Any valuation satisfying both \(p \lor \varphi \) and \(\neg p \lor \psi \) satisfies \(\varphi \lor \psi \).

- Suppose \(\nu \) satisfies both \(p \lor \varphi \) and \(\neg p \lor \psi \).

- Either \(\nu(p) = T \) or \(\nu(p) = F \).

- If \(\nu(p) = T \), then \(\nu(\neg p) = F \). In order to satisfy \(\neg p \lor \psi \) then, \(\nu(\psi) = T \). Thus \(\nu(\varphi \lor \psi) = T \).

- If \(\nu(p) = F \), in order to satisfy \(p \lor \varphi \), \(\nu(\varphi) = T \). Thus \(\nu(\varphi \lor \psi) = T \).

- Thus adding the resolvent preserves the valuations that satisfy the set of clauses.
Completeness

- Completeness is more complicated and we will not prove it here.

- We’d have to show that if a set is unsatisfiable, there is a set of resolution steps that result in the empty clause.

Resolution Algorithm Termination (propositional case)

- Closure is always achievable.

- The set of distinct reduced clause sets for a given set of proposition symbols is finite.

- At worst, every possible clause (regarding reordering of symbols as equivalent) will be generated.

- How many distinct clauses can there be for n proposition symbols?
Resolution in tabular form

1. $p \lor \neg q$ Premise
2. $q \lor r$ Premise
3. $\neg r$ Premise
4. $\neg p$ Premise
5. q Resolution 2, 3
6. p Resolution 1, 5
7. \bot Resolution 6, 4
Resolution as a Tree

\[p \lor \neg q \quad q \lor r \quad \neg r \quad \neg p \]

children nodes are resolvents
Try resolving these clause sets:

- \neg p \lor \neg q \lor \neg r,
 \neg q \lor r,
 q \lor s,
 \neg s,
 p

- p \lor \neg q \lor r,
 q \lor r,
 \neg p
Sometimes a DAG is more appropriate than a tree for showing all options.

We avoid identifying the two \(\perp \) nodes, so as not to confuse the two sets of antecedents.
Useful Resolution Short-cuts

- **Uncomplemented Literal Lemma** (also called the “Purity Rule”)

 If a **literal** appears in one or more clauses, but its **complement appears in no clause**, then every clause containing that literal can be deleted from the set without changing satisfiability.

- **Rationale**: The literal in question can be assigned T without loss of generality, thus clauses containing it cannot affect satisfiability.
Example of Uncomplemented Literal Lemma

- \(\neg p \lor q \lor r, \)
 - \(\neg q \lor r, \)
 - \(q \lor s, \)
 - \(\neg s, \)
 - \(p \)
- \(r \) occurs only uncomplemented.
- The clause set is unsatisfiable iff the following set is:
 - \(q \lor s, \)
 - \(\neg s, \)
 - \(p \)
- and this set is unsatisfiable iff \(\neg s \) is unsatisfiable (which it isn’t).
Further Resolution Short-Cuts

- **Unit Clause Lemma:**

 If a **unit** cause (clause with only one literal L) exists within the set, the following operation may be performed without affecting satisfiability:

 - Remove all clauses containing L.
 - Remove the complement of L from all remaining clauses.

- **Rationale:** The literal in question **must** be assigned T in a satisfying interpretation. Hence all clauses containing it will be T and contribute nothing to the set. Likewise, its complement must be assigned F, and thus contribute nothing to the individual clauses.
Example of Unit Clause Lemma

- \(\neg p \lor q \lor r \)
 - \(q \lor s \)
 - \(\neg s \)
 - \(p \lor \neg s \)

- \(\neg s \) is a unit clause. The complement of \(\neg s \) is \(s \).

- The clause set is unsatisfiable iff the following set is:
 - \(\neg p \lor q \lor r \)
 - \(q \)
 - \((\text{formerly } q \lor s) \)

(\(\neg s \) and \(p \lor \neg s \) were removed.)
The previous two edit rules are the basis of another algorithm for satisfiability: DPLL for Davis-Putnam-Logemann-Loveland

Further Useful Optimizations

Subsumption Lemma:

- One clause **subsumes** another if the former’s literals are a **subset** of the latter’s.

- If one clause of a set subsumes another, the **subsumed** clause (the larger one) can be **dropped** from the set.

- **Rationale**: If C subsumes D, then any interpretation satisfying C must also satisfy D (because the literals are disjoined). Thus the satisfiability of the set of clauses is unaffected if D is removed.
Example of Subsumption Lemma

- \(\neg p \lor q \lor \neg r, \)
 \(\neg p \lor \neg r, \)
 \(p \lor r \lor q \)
- The second clause subsumes the first.
- The clause set is unsatisfiable iff the following set is:
 \(\neg p \lor \neg r, \)
 \(p \lor r \lor q \)
Common Special Case of Clause Set

• Often we want to prove a sequent such as:
 \[
 \varphi_{11} \land \varphi_{12} \land \ldots \land \varphi_{m1} \rightarrow \psi_1,
 \varphi_{21} \land \varphi_{22} \land \ldots \land \varphi_{m2} \rightarrow \psi_2,
 \ldots
 \varphi_{n1} \land \varphi_{n2} \land \ldots \land \varphi_{mn} \rightarrow \psi_n
 \models \chi_1 \land \chi_2 \land \ldots \land \chi_p
 \]
 where each symbol represents a literal.

• This can be done by showing that the following clause set is unsatisfiable:
 \[
 \{ \neg \varphi_{11} \lor \neg \varphi_{12} \lor \ldots \lor \neg \varphi_{m1} \lor \psi_1,
 \neg \varphi_{21} \lor \neg \varphi_{22} \lor \ldots \lor \neg \varphi_{m2} \lor \psi_2,
 \ldots
 \neg \varphi_{n1} \lor \neg \varphi_{n2} \lor \ldots \lor \neg \varphi_{mn} \lor \psi_n,
 \neg \chi_1 \lor \neg \chi_2 \lor \ldots \lor \neg \chi_p \}
 \]
Strategic Optimizations

- **Unit-Preference**: Prefer resolving with unit clauses. These reduce the size of resulting clauses.

- **Set-of-Support**: Divide the clauses into two sets:
 - A *known-satisfiable* subset
 - Other (called the “set of support” SOS)

- Always resolve with an SOS clause or a clause derived from an SOS clause.
Set-of-Support

- Showing that the following clause set is **unsatisfiable**:

\[
\{ \neg \phi_{11} \lor \neg \phi_{12} \lor \ldots \lor \neg \phi_{1m1} \lor \psi_1, \\
\neg \phi_{21} \lor \neg \phi_{22} \lor \ldots \lor \neg \phi_{1m2} \lor \psi_2, \\
\ldots \\
\neg \phi_{n1} \lor \neg \phi_{n2} \lor \ldots \lor \neg \phi_{nmn} \lor \psi_n, \\
\neg \chi_1 \lor \neg \chi_2 \lor \ldots \lor \neg \chi_p \}
\]

- Satisfiable “axioms”

- Initial set of support
Horn Clauses

- A Horn clause is one in which there is at most one non-negated literal:
 - $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_m \lor \psi$ (one non-negated)
 - or
 - $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_m$ (no non-negated)

- Horn clauses are the basis of the Prolog language, where:
 - $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_m \lor \psi$
 - is written
 - $\psi :\neg \varphi_1, \varphi_2, \ldots \varphi_m$
 - interpreted as
 - $\varphi_1 \land \varphi_2 \land \ldots \land \varphi_m \rightarrow \psi$

If $m = 0$, then we just write ψ.
Prolog uses a special case of resolution to do its work ("SLD" = \textit{Selective Linear Definite} resolution)

\begin{itemize}
 \item \{p \lor \neg r \lor \neg s,
 \quad r \lor \neg q,
 \quad s \lor \neg q,
 \quad q,
 \quad \neg p, \quad \text{Non-negated}
 \}
 \end{itemize}

becomes in Prolog syntax:

\begin{itemize}
 \item p :- r, s.
 \item r :- q.
 \item s :- q.
 \item q.
 \item \neg p, \quad \text{literals in red.}
 \end{itemize}

Dialog with Prolog:

\begin{verbatim}
consult(user).
p :- r, s.
r :- q.
s :- q.
q.
^D
l ?- p.
yes
\end{verbatim}
Resolution Theorem Provers

- Prolog cannot handle general negation
- Resolution theorem provers can
- Examples: Prover9, Vampire, ...
• Extends the former program “Otter”
• Developed at Argonne National Laboratory
• Free download for all platforms
• http://www.cs.unm.edu/~mccune/prover9/
• Also includes “Mace” for finding counterexamples
Prover9 GUI: - is “not”
| is “or”
Prover9 Proof (F is empty clause)
Resolution for Predicate Logic

- **Predicate Clausal Form:**
 - A literal is an atomic formula or its negation (instead of a proposition symbol or its negation).

- The variables of each clause are each implicitly ∀-quantified.

- The variables of each clause are thus independent from the other clauses; even if they are the same, they should be thought of as being different (e.g. implicitly rename by indexing with a clause number).
Example: Predicate Clausal Form

- Clause set \{p(X), q(X, Y), ¬q(X, X) ∨ p(X)\}
 stands for the conjunction

- \(\forall X \ p(X) \)
 \(\land \forall X \forall Y \ q(X, Y) \)
 \(\land \forall X \forall Y (\neg q(X, X) \lor p(X)) \)

which is the same as

- \(\forall X_1 \ p(X_1) \)
 \(\land \forall X_2 \forall Y_2 \ q(X_2, Y_2) \)
 \(\land \forall X_3 \forall Y_3 (\neg q(X_3, X_3) \lor p(X_3)) \)

i.e. the clause set

- \{p(X_1), q(X_2, Y_2), ¬q(X_3, X_3) ∨ p(X_3)\}
How General is This?

- Completely general, as far as showing unsatisfiability is concerned.
Examples of Predicate Clausal Form

- ¬human(X) ∨ mortal(X)
- human(socrates)
- ¬mortal(socrates)

These clauses can be used to prove the syllogism:
- All humans are mortal.
- Socrates is a human.
- Therefore Socrates is mortal.
Resolution for Predicate Clauses

• To resolve *predicate* clauses, it is no longer sufficient to look for just a literal and its negation in two distinct clauses
 \[\neg q(X, X) \lor p(X) \]
 \[\neg p(Z) \lor r(Z, Y) \]

• For one thing, the identity of the *variables* is *independent* in each.

• For another, the arguments are generally *terms*, not just simple variables:
 \[\neg q(X, X) \lor p(f(X)) \]
 \[\neg p(X) \lor r(g(X), c) \]
Example of What Resolution Must Do

- Suppose we have derived three formulas (where c is a constant symbol):
 - $p(c)$
 - $\forall X (p(X) \rightarrow q(f(X)))$
 - $\forall X (q(X) \rightarrow r(X, g(X)))$

- We would expect to be able to infer
 - $q(f(c))$
 - $r(f(c), g(f(c)))$

- Resolution must be able to handle such things.
Equivalent Clausal Form

- The clausal form of
 - \(p(c) \)
 - \(\forall X \ (p(X) \rightarrow q(f(X))) \)
 - \(\forall X \ (q(X) \rightarrow r(X, g(X))) \)

 is
 - \{p(c), \neg p(X) \lor q(f(X)), \neg q(X) \lor r(X, g(X))\}

- Resolution has to “make a connection” between \(p(c) \) and \(p(X) \), and between \(q(f(X)) \) and \(q(X) \).
Unification

• The “connection” alluded to on the previous slide is known as unification.

• Two atoms are unifiable if there is a uniform set of substitutions of terms for their variables that makes them identical.

• If such a substitution set exists, it is applied to all literals in the formulas prior to resolution.
Unification Examples

- Consider atoms \(p(c), p(X) \) (\(c \) is a constant, \(X \) a variable).

- These terms are **unifiable**, since the substitution \([c/X]\) (substitute \(c \) for \(X \)) makes them identical.
Unification Examples

- Consider $q(c, d)$, $q(X, X)$ (c and d are constants, X a variable).

- These terms are **not unifiable**.

- Distinct **constant symbols do not unify**. There is no substitution that will make them identical.

- (Note: This is not the same as saying constant symbols cannot be equated. They can, with a separate equation such as $c = d$. **Equality is handled separately.**)
Renaming Apart

- Consider \(p(X, f(a)) \) vs. \(p(g(Y), f(X)) \)

- These might appear not to unify, since we would have a conflict \([g(Y)/X]\) vs. \([a/X]\).

- However, if we **rename** the variables in the second clause we get:
 \[
 p(X, f(a)) \text{ vs. } p(g(Z), f(W)).
 \]
 These unify, using \([g(Z)/X, a/W]\).

- **Note:** Renaming apart is done only at the **start** of considering unification of two clauses, and all variables in the clause are renamed **uniformly**.
Notation for Variable Substitutions

- In general, a substitution consists of a set of bindings of variables to terms, e.g.
 \[\beta = [Z/X, f(Z, c)/Y, c/W] \]

- If \(\tau \) is a term, then \(\tau\beta \) denotes the result of making the substitutions \(\beta \) in for variables in \(\tau \), e.g.

\[
\begin{align*}
\text{if} & \quad \tau = p(X, g(Y, W)) \\
\text{then} & \quad \tau\beta = p(Z, g(f(Z, c), c))
\end{align*}
\]
Composing Variable Substitutions

• If β and γ are substitutions and τ is a term, then $(\tau\beta)\gamma$ denotes the result of first applying β to τ, then γ to the result, e.g.

\[
\begin{align*}
\tau &= p(X, g(Y, W)) & \text{literal} \\
\beta &= \{Z/X, f(Z, c)/Y, c/W\} & \text{sub} \\
\gamma &= \{V/Z\} & \text{sub} \\
(\tau\beta)\gamma &= p(V, g(f(V, c), c))
\end{align*}
\]

• The \textbf{composition $\beta\gamma$ of substitutions} β and γ is the substitution such that for all terms τ

\[
\tau(\beta\gamma) = (\tau\beta)\gamma
\]
e.g. $\{V/X, f(V, c)/Y, c/W\}$ above
Unifiers

- A set of substitutions that unifies two literals is called a **unifier**.
More Unification Examples

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
<th>Unifier, if any?</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(X, X)</td>
<td>p(f(Y), f(Z))</td>
<td></td>
</tr>
<tr>
<td>p(X, X)</td>
<td>p(f(Y), g(Y))</td>
<td></td>
</tr>
<tr>
<td>p(X, Y)</td>
<td>p(Z, f(Z))</td>
<td></td>
</tr>
<tr>
<td>p(X, f(X))</td>
<td>p(g(Y), W)</td>
<td></td>
</tr>
<tr>
<td>p(X, f(X))</td>
<td>p(f(Y), Y)</td>
<td></td>
</tr>
</tbody>
</table>
Even More Unification Examples

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
<th>Unifier, if any?</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(X, Y)</td>
<td>p(f(Z), g(Z))</td>
<td></td>
</tr>
<tr>
<td>p(X, f(X))</td>
<td>p(f(Z), U)</td>
<td></td>
</tr>
<tr>
<td>p(f(X), g(X))</td>
<td>p(f(U), U)</td>
<td></td>
</tr>
<tr>
<td>p(f(X), f(X))</td>
<td>p(c, c)</td>
<td></td>
</tr>
<tr>
<td>p(f(X), g(X))</td>
<td>p(Y, g(Y))</td>
<td></td>
</tr>
</tbody>
</table>
Most General Unifiers (mgu)

- If two literals unify at all, they have a “most general unifier”, one which adds no unneeded constraints.

- Example: \(p(X) \) vs. \(p(f(Y)) \) could be unified with the substitution
 \[f(c)/X, \ c/Y \].

- However, this would **not** be the most general, since we could leave \(Y \) as a variable:
 \[f(Z)/X \]
 and each of the original literals would unify with this.
Generality of Substitutions

- Substitution β is **as general as** substitution ν if there is a γ such that $\nu = \beta \gamma$.

- To say that β is a “most general unifier” means that it is as general as *any* unifier.
Find the MGU or indicate non-unifiable

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Term 2</th>
<th>MGU?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(X, Y))</td>
<td>(p(Z, Z))</td>
<td></td>
</tr>
<tr>
<td>(p(X, c))</td>
<td>(p(Y, Y))</td>
<td></td>
</tr>
<tr>
<td>(p(f(X), Y))</td>
<td>(p(W, f(Z)))</td>
<td></td>
</tr>
<tr>
<td>(p(f(X), Y))</td>
<td>(p(Z, Y))</td>
<td></td>
</tr>
<tr>
<td>(p(f(Z), g(X)))</td>
<td>(p(Y, g(Y)))</td>
<td></td>
</tr>
</tbody>
</table>
MGU Algorithm (Martelli & Montanari)

- **Input:** Two terms, or two atoms, τ_1, τ_2, already renamed apart.
- **Output:** Either the most general unifier for τ_1, τ_2, or “not unifiable”.

- $S := \{[\tau_1, \tau_2]\}$;
 $\mu :=$ the empty substitution;
 while($S \neq \emptyset$)
 remove a pair $[L, R]$ from S;
 if($L = R$)
 do nothing;
 else if($L = f(s_1, s_2, ..., s_n)$ and $R = f(t_1, t_2, ..., t_n)$)
 $S := S \cup \{[s_1, t_1], [s_2, t_2],... [s_n, t_n]\}$;
 else if($L = x$ where x is a variable not occurring in R)
 $\mu := \mu[R/x]$;
 $S :=$ applytoallpairs([R/x], S);
 else if($R = x$ where x is a variable not occurring in L)
 $\mu := \mu[L/x]$;
 $S :=$ applytoallpairs([L/x], S);
 else return “not unifiable”;
 return μ as the MGU;

Intuitive Unification

- Remember when two things **don’t** unify:
 - Distinct constant symbols don’t unify.
 - Terms with outermost function symbols that are distinct don’t unify.
 - A term with an outermost function symbol doesn’t unify with a constant.
 - Two terms with the same outermost function symbol don’t unify if some of their arguments don’t pairwise unify.

- Remember that substitutions are **cumulative** during unification.
Example

- \(p(X, f(X)) \text{ vs. } p(Y, f(Y))\)
 - Initial
 - \(S := \{[p(X, f(X)), p(Y, f(Y))]\}\)
 - \(\mu := []\)

- Remove \([p(X, f(X)), p(Y, f(Y))]\)
 - Case 2
 - \(S := \{[X, Y], [f(X), f(Y)]\}\)

- Remove \([X, Y]\)
 - Case 3
 - \(\mu := [Y/X]; S := \{[f(Y), f(Y)]\}\)

- Remove \([f(Y), f(Y)]\)
 - Case 1
 - \(S := {}\)

- Result: unifiable with mgu \([Y/X]\)
Diagrammatically

- $p(X, f(X))$
 \uparrow substitution $[Y/X]$
 $\downarrow p(Y, f(Y))$

- $p(Y, f(Y))$
 $\downarrow$$\downarrow$$\downarrow$$\downarrow$
 $\downarrow p(Y, f(Y))$
Example

• \(p(X, f(X)) \) vs. \(p(f(Y), Y) \)
 initial
• \(S := \{[p(X, f(X)), p(f(Y), Y)]\} \)
• \(\mu := \{\} \)

• Remove \([p(X, f(X)), p(f(Y), Y)]\)
 case 2
• \(S := \{[X, f(Y)], [f(X), Y]\} \)

• Remove \([X, f(Y)]\)
 case 3
• \(\mu := [f(Y)/X]; S := \{[f(f(Y)), Y]\} \)

• Remove \([f(f(Y)), Y]\)
 case 5
• Result: not unifiable
Diagrammatically

- $p(X, f(X))$
 - $\uparrow\downarrow$
 - substitution $[f(Y)/X]$
 - $p(f(Y), Y)$

- $p(f(Y), f(f(Y)))$
 - $\uparrow\downarrow$
 - occur check fails, not unifiable
 - $p(f(Y), Y)$
Example

- \(p(X, g(Z), X) \) vs. \(p(f(Y), Y, W) \)
- \(S := \{[p(X, g(Z), X), p(f(Y), Y, W)]\} \)
- \(\mu := {} \)

Remove \([p(X, g(Z), X), p(f(Y), Y, W)] \)
- \(S := \{[X, f(Y)], [g(Z), Y], [X, W]\} \)
- \(\mu := [f(Y)/X]; S := \{[g(Z), Y], [f(Y), W]\} \)
- \(\mu := [f(g(Z))/X, g(Z)/Y]; S := \{[f(g(Z)), W]\} \)
- \(\mu := [f(g(Z))/X, g(Z)/Y, f(g(Z))/W]; S := {} \)
- Result: unifiable with
 \(\text{mgu} \ [f(g(Z))/X, g(Z)/Y, f(g(Z))/W] \)
Diagrammatically

• \(p(X, g(Z), X) \) vs.
 \[
 \uparrow \\
 p(f(Y), Y, W)
 \]
 substitution \([f(Y)/X]\)

• \(p(f(Y), g(Z), f(Y)) \) vs.
 \[
 \uparrow \downarrow \\
 p(f(Y), Y, W)
 \]
 substitution \([g(Z)/Y, f(g(Z))/X]\)

• \(p(f(g(Z)), g(Z), f(g(Z))) \) vs.
 \[
 \uparrow \downarrow \\
 p(f(g(Z)), g(Z), W)
 \]
 substitution \([f(g(Z))/W, g(Z)/Y, f(g(Z))/X]\)

• \(p(f(g(Z)), g(Z), f(g(Z))) \) vs.
 \[
 \uparrow \downarrow \\
 p(f(g(Z)), g(Z), f(g(Z)))
 \]
 substitution \([f(g(Z))/W, g(Z)/Y, f(g(Z))/X]\)