Abstract States of a Language

Robert M. Keller
Harvey Mudd College
April 2013
Languages

- Recall that a language over a finite alphabet Σ is any set of strings from elements of the alphabet.

- The set of all such strings is designated Σ^*.

- So L is a language means $L \subseteq \Sigma^*$.
States of a Machine

You might think of a state as something that captures aspects of previous behavior.

This is true. However, more importantly:

A state determines the possible future behaviors.
States of a Language

- We are used to thinking in terms of states of a *machine*.

- But languages also have a kind of states, which we call *abstract states*.
States of a Language

- Suppose $L \subseteq \Sigma^*$.

- Define a binary relation \equiv_L on Σ^* as follows:
 - $x \equiv_L y$ means
 $$\forall z \in \Sigma^* \ (xz \in L \iff yz \in L)$$
Example of \equiv_L

- Suppose L is $\{(01)^n \mid n \in \mathbb{N}\}$, where \mathbb{N} is the set of natural numbers.
- Thus $L = \{\varepsilon, 01, 0101, 010101, \ldots\}$

- Consider 01 vs. 0101
- Is $01 \equiv_L 0101$?
- Yes, provided
 $$\forall z \in \Sigma^* \ (01z \in L \iff 0101z \in L)$$
Example of \equiv_L, where $L = \{(01)^n \mid n \in \mathbb{N}\}$

$q\quad ? \forall z \in \Sigma^* \ (01z \in L \iff 0101z \in L)?$

$q\quad $If z is of the form $(01)^m$ for some m, then both $01z$ and $0101z$ are in L.

$q\quad $If z is not of that form, then neither is in L.

$q\quad $Therefore $01 \equiv_L 0101$.
Example of \equiv_L, where $L = \{(01)^n \mid n \in \mathbb{N}\}$

- Now consider 00 and 11.
- Is it true that $00 \equiv_L 11$?
- $\forall z \in \Sigma^* \ (00z \in L \iff 11z \in L)$?
- Neither 00 nor 11 $\in L$. Moreover, there is no string z such that either $00z \in L$ or $11z \in L$.
- Since the definition is based on \iff, we do have $00 \equiv_L 11$.
Example of \equiv_L, where $L = \{(01)^n \mid n \in \mathbb{N}\}$

- Finally consider 01 and 010.
- Is it true that $01 \equiv_L 010$?
- $\forall z \in \Sigma^* \ (01z \in L \iff 010z \in L)$?
- Consider $z = \varepsilon$:
 - $01\varepsilon = 01 \in L$ but $010\varepsilon = 010 \notin L$
- Therefore $\neg (01 \equiv_L 010)$.
Distinguishing Strings

- A string z such $xz \in L$ but $yz \notin L$ is said to distinguish x from y.

- So not $x \equiv_L y$ if there is some string that distinguishes x from y. In this case x and y are called “distinguishable”.

- Equivalently, $x \equiv_L y$ if there is no string that distinguishes x from y. Such x and y are called “indistinguishable”.

Exercise: Classify these pairs \equiv_L or not (find a distinguishing string, if possible)

$L = \{(01)^n \mid n \in N\}$

- 01 vs. 010101
- ϵ vs. 0
- ϵ vs. 01
- 101 vs. 0101
Exercise:

- Is it true, for any \(L \), and \(x, y \in L \) that \(x \equiv_L y \)?
Properties of \equiv_L

- $\forall x \in \Sigma^* \ x \equiv_L x$ (reflexive)
 $$\forall z \in \Sigma^* \ (xz \in L \iff xz \in L)$$

- $\forall x, y \in \Sigma^* \ x \equiv_L y \rightarrow y \equiv_L x$ (symmetric)

 If $\forall z \in \Sigma^* \ (xz \in L \iff yz \in L)$
 then $\forall z \in \Sigma^* \ (yz \in L \iff xz \in L)$
Properties of \equiv_L

- $\forall x,y,z \in \Sigma^* \ (x \equiv_L y \land y \equiv_L z) \rightarrow x \equiv_L z$ (transitive)

If $\forall w \in \Sigma^* \ (xw \in L \leftrightarrow yw \in L)$
and $\forall w \in \Sigma^* \ (yw \in L \leftrightarrow zw \in L)$
then $\forall w \in \Sigma^* \ (xw \in L \leftrightarrow zw \in L)$

- These can all be shown using natural deduction.
Properties of \equiv_L

- As \equiv_L is reflexive, symmetric, and transitive, it is an equivalence relation.

- A known property of an equivalence relation on any set is that it induces a partition on that set.

- The elements of the partition are sets $[x]_L$ such that $[x]_L = \{y \in \Sigma^* \mid x \equiv_L y\}$.

- These sets are called equivalence classes.

- Note that $[x]_L = [y]_L$ iff $x \equiv_L y$.
Properties of a Partition on a Set

A partition of S is any set of subsets of S, such that:

- The subsets are pairwise mutually exclusive.
- The union of the subsets is S.
Showing how \(\equiv_L \) partitions \(\Sigma^* \)

\[
[w]_L = \{ y \in \Sigma^* \mid w \equiv_L y \}
\]

\[
[x]_L = \{ y \in \Sigma^* \mid x \equiv_L y \}
\]
Partition for $L = \{(01)^n \mid n \in \mathbb{N}\}$

$[\varepsilon]_L = \{\varepsilon, 01, 0101, \ldots\}$

$[0]_L = \{\varepsilon, 010, 01010, \ldots\}$

$[1]_L = \{1, 00, 10, 001, \ldots\}$

$[\varepsilon]_L = \{y \in \Sigma^* \mid \varepsilon \equiv_L y\}$
Terminology

- The “rank” of an equivalence relation is the number of equivalence classes.

- The rank can be finite or infinite.
Properties of \equiv_L

- \equiv_L is not just an equivalence relation. It has the following additional property:

- $\forall \sigma \in \Sigma \ (x \equiv_L y \rightarrow x\sigma \equiv_L y\sigma)$

- This property is called right-congruence ("right" because x and y are "multiplied" on the right.)
Proof that \equiv_L is a right congruence

- To show:
 \[x \equiv_L y \rightarrow \forall \sigma \in \Sigma \ (x\sigma \equiv_L y\sigma) \]
 - Suppose $x \equiv_L y$ and let $\sigma \in \Sigma$, to show $x\sigma \equiv_L y\sigma$.

- From $x \equiv_L y$, the definition of \equiv_L provides
 \[\forall w \in \Sigma^* \ (xw \in L \leftrightarrow yw \in L). \] \hspace{1cm} (++)

- The definition of \equiv_L has $x\sigma \equiv_L y\sigma$ iff
 \[\forall z \in \Sigma^* \ ((xv)z \in L \leftrightarrow (yv)z \in L). \] \hspace{1cm} (+++)

- Since concatenation is associative, (+++) is the same as
 \[\forall z \in \Sigma^* \ (x(vz) \in L \leftrightarrow y(vz) \in L), \] which follows directly from (++).
Some questions can be answered just knowing that \equiv_L is a right congruence.

(L is $\{(01)^n \mid n \in \mathbb{N}\}$)

a. ε vs. 01 Yes, by direct reasoning

b. 01 vs. 0101 Yes, by right congruence & a.

c. ε vs. 1 No, obviously (not \equiv).
Equivalents of \equiv_L being a right congruence

- $\forall \sigma \in \Sigma \ (x \equiv_L y \rightarrow x\sigma \equiv_L y\sigma)$ \hspace{1cm} definition

- $\forall w \in \Sigma^* \ (x \equiv_L y \rightarrow xw \equiv_L yw)$ \hspace{1cm} using induction

- $\forall w \in \Sigma^* \ (x \equiv_L y \iff xw \equiv_L yw)$
 from above, because other direction trivial
Right Congruence \(L = \{(01)^n \mid n \in \mathbb{N}\} \)

\[[\varepsilon]_L = \{\varepsilon, 01, 0101, \ldots\} \]
\[[0]_L = \{\varepsilon, 010, 01010, \ldots\} \]
\[[1]_L = \{1, 00, 10, 001, \ldots\} \]

\[[x]_L = \{y \in \Sigma^* \mid x \equiv_L y\} \]
Abstract States of L are the Equivalence Classes of \equiv_L

$[\varepsilon]_L = \{\varepsilon, 01, 0101, \ldots\}$
$[0]_L = \{\varepsilon, 010, 01010, \ldots\}$
$[1]_L = \{1, 00, 10, 001, \ldots\}$
If L is regular, the abstract states of L determine a DFA accepting L.

The initial state is $[\varepsilon]_L$.

The accepting states are those $[x]_L$ where $x \in L$.
Conversely, if \equiv_L has a finite rank partition, then L is regular.

- The following are the same:
 - The abstract states of L.
 - The equivalence classes of \equiv_L.
 - The states of a minimal DFA for L.
What does “minimal” mean?

- A machine is minimal iff no two different states are equivalent.

- In general, two states \(q, q' \) are equivalent iff

\[
\forall w \in \Sigma^* \ (\delta(q, x) \in F \iff \delta(q', x) \in F)
\]

where \(\delta \) is the extended state-transition function.
Extended State-Transition Function

- The **basic** state-transition function is
 \[\delta: Q \times \Sigma \rightarrow Q \]

- The **extended** function is
 \[\delta: Q \times \Sigma^* \rightarrow Q \]
 where \(\delta(q, \varepsilon) = q \), and
 \[\forall x \in \Sigma^* \; \delta(q, \sigma x) = \delta(\delta(q, \sigma), x) \]
 (recursive definition, where the inner \(\delta \) is basic).
Myhill-Nerode Theorem

- $L \subseteq \Sigma^*$ is a regular language iff
- L is the \textit{union} of equivalence classes of a right congruence relation on L of \textbf{finite rank}.

- We need union here, because there may be more than one class corresponding to accepting states.
Notes on Myhill-Nerode

- It is proved by the comments leading up to the statement.

- If there is a right congruence relation as described, then:
 - The states of the DFA are the equivalence classes $[x]$, where $x \in \Sigma^*$.
 - The transitions are defined by $\delta([x], \sigma) = [x\sigma]$.
 - The initial state is $[\varepsilon]$.
 - The accepting states are $[x]$ where $x \in L$.
Notes on Myhill-Nerode

- The transition function $\delta([x], \sigma) = [x\sigma]$ is well-defined, since if $[x] = [y]$, then $x \equiv y$, and thus for any $\sigma \in \Sigma$, $x\sigma \equiv y\sigma$, hence $[x\sigma] = [y\sigma]$.
- The initial state is $[\varepsilon]$.
- The accepting states are $[x]$ where $x \in L$.
Case where a union of more than one class is needed.

- Consider $L = \{x \in \{0, 1\}^* \mid x \text{ has at most 2 1's}\}$.
- The equivalence classes are: $[\varepsilon], [1], [11], [111]$ and $L = [\varepsilon] \cup [1] \cup [11]$
- The DFA is minimal.
Non-Regularity Summarized

- A language \(L \) is regular iff \(\equiv_L \) has finite rank.

- Thus \(L \) is not regular iff \(\equiv_L \) has infinite rank.

- \(L \) is not regular iff there exists an infinite set of mutually-distinguishable strings.

- **In order to show non-regularity, we don’t have to exhibit the abstract states. We only need to infer there is such a set.**
Example of Non-Regularity

- Consider \(L = \{0^n1^n \mid n \in \mathbb{N}\} \)
- We claim that
 - if \(m \neq n \), then not \(0^m \equiv_L 0^n \).

- We need only exhibit a \(z \) such that
 - \(0^mz \in L \) and \(0^nz \not\in L \).
- Such a distinguishing \(z \) is \(1^m \).
- As there is an infinite set of strings \(\{0^n \mid n \in \mathbb{N}\} \) that are pairwise distinguishable, \(L \) is not regular.
Example of Non-Regularity

- Consider
 \[L = \{ x \in \{0, 1\}^* \mid \#_0(x) = \#_1(x) \} \], where \#_\sigma(x) means the number of \sigma in x.

- We claim that
 if \(m \neq n \), then \textbf{not} \(0^m \equiv_L 0^n \).

- \(1^m \) distinguishes these strings.

- The rest of the argument on the previous slide then applies here as well.
Example of Non-Regularity

- Consider \(L = \{ww \mid w \in \{0, 1\}^*\} \)
- We claim that
 - if \(m \neq n \), then \(\text{not } 10^m \equiv_L 10^n \).

- We need only find an \(z \) such that
 - \(10^mz \in L \) and \(10^nz \notin L \).
- Such a distinguishing \(z \) is \(10^m \).
- As there is an infinite set of strings
 - \(\{10^n \mid n \in \mathbb{N}\} \) that are pairwise distinguishable, \(L \) is not regular.
Exercise: Regular or Non-Regular?

- \{ww^R \mid w \in \{0, 1\}^*\} (even-length palindromes \(w^R\) is the reverse of \(w\))
- \{ww \mid w \in \{1\}^*\}
- \{1^n \mid n \text{ is even}\}
- \{1^n \mid n \text{ is a perfect square}\}
- \{1^n \mid n \text{ is prime}\}
- \{1^n \mid n \text{ is an even prime}\}
- \{w \in \{\text{\textquotesingle (, \textquotesingle)\}}^* \mid w \text{ is a well-balanced parenthesis string}\} i.e. (), (()), (()()), ...
Can a state diagram be constructed for non-regular languages (if we wanted to)?

- We can construct a diagram that suggests the form of the machine, but it cannot be completed. The equivalence classes are abstract states.

- If we allow recursion in diagrams, certain non-regular languages can be constructed. (We will show this when discussing context-free grammars.)
Infinite Diagram for \(\{0^n1^n \mid n \in \mathbb{N} \} \)
Derivative of a Language

- Let $L \subseteq \Sigma^*$ be a language.
- Let $x \in \Sigma^*$.

Define $L/x = \{y \mid xy \in L\}$.

L/x is called the **derivative** of L wrt x.

Informally, L/x consists of members of L with any initial x “lopped off”. If x cannot be lopped off from a member, then it is not included.
Examples

- $\{01, 011\}/0 = \{1, 11\}$
- $\{01, 11\}/0 = \{1\}$
- $\{(01)^n \mid n \in \mathbb{N}\}/0 = \{1(01)^n \mid n \in \mathbb{N}\}$
- $\{(01)^n \mid n \in \mathbb{N}\}/1 = \emptyset$
- $\{0^n1^n \mid n \in \mathbb{N}\}/0^m = \{0^{(n-m)}1^n \mid n \geq m\}$
Use of Derivatives

- Derivatives provide a method for contacting the abstract states of a language.
Claim

- If $L \subseteq \Sigma^*$ is regular then the set of derivatives $\{L/x | x \in \Sigma^*\}$ is finite.
- Justification: Consider the minimal DFA D accepting L.
- With each state q of D, define $L(q) = \{x | \delta(q, x) \in F\}$, where F is the set of accepting states.
- So $L = L(q_0)$.
- Moreover, for each state q
 \[L(\delta(q, x)) = L(q)/x \]
Example

- Consider again $L = \{x \in \{0, 1\}^* \mid x$ has at most 2 1’s.$\}
- The DFA was constructed earlier and is repeated above.
- $L([\varepsilon]) = L = L(\delta([\varepsilon], \varepsilon))$
- $L([1]) = L/1 = L(\delta([\varepsilon], 1))$
- $L([11]) = L/11 = L(\delta([\varepsilon], 11))$
- $L([111]) = \emptyset = L/111 = L(\delta([\varepsilon], 111))$
- etc.
Derivatives of $L = \{0^n1^n \mid n \in \mathbb{N}\}$

$L/\varepsilon = \{0^n1^n \mid n \in \mathbb{N}\}$

$L/0^m = \{0^{n-m}1^n \mid n \geq m\}$

$L/0^m1^k = \{0^n1^{n-k} \mid n \geq k > 0\}$

$L/1 = \text{everything else}$
Derivatives of Regular Expressions

- An amazing result is that the derivative concept can be extended to regular expressions, giving us a way to construct a DFA from a regular expression without going to an NFA first.

- For any regular expression R over Σ and any $\sigma \in \Sigma$ we can construct R/σ such that $L(R/\sigma) = L(R)/\sigma$.

Derivative Rules for Regular Expressions

- \(\emptyset / \sigma = \emptyset \)
- \(\varepsilon / \sigma = \emptyset \)
- \(\sigma / \sigma = \varepsilon \)
- \(\sigma' / \sigma = \emptyset \) if \(\sigma' \neq \sigma \)
- \((R \cup S) / \sigma = (R / \sigma) \cup (S / \sigma) \)
- \((RS) / \sigma = (R / \sigma)S \), if \(\varepsilon \not\in L(R) \)
- \((RS) / \sigma = (R / \sigma)S \cup (S / \sigma) \), if \(\varepsilon \in L(R) \)
- \((R^*) / \sigma = (R / \sigma)R^* \)
Note on the condition $\varepsilon \in L(R)$

- This condition is determinable \textit{without} constructing a DFA, using the following rules:
 - not $\varepsilon \in L(\emptyset)$
 - $\varepsilon \in L(\varepsilon)$
 - not $\varepsilon \in L(\sigma)$
 - $\varepsilon \in L(R \cup S)$ iff $\varepsilon \in L(R)$ or $\varepsilon \in L(S)$
 - $\varepsilon \in L(RS)$ iff $\varepsilon \in L(R)$ and $\varepsilon \in L(S)$
 - $\varepsilon \in L(R^*)$
Examples of Derivatives of Res (apply the rules recursively)

- $0/0 = \varepsilon$
- $1/0 = \emptyset$
- $(0 \cup 1)/0 = \varepsilon$
- $01/0 = 1$
- $01/1 = \emptyset$
- $0*/0 = 0^*$
- $1*/0 = \emptyset$
- $(0 \cup 1)^*/0 = ((0 \cup 1)/0)(0 \cup 1)^* = (0/0 \cup 1/0)(0 \cup 1)^*$

 $\quad = (\varepsilon \cup \emptyset)(0 \cup 1)^* = \varepsilon(0 \cup 1)^* = (0 \cup 1)^*$
- $(01)^*/0 = 1(01)^*$
- $(01)^*/1 = \emptyset$
Example: Using derivatives to construct a DFA

- Suppose $R = 0^* \cup 0^*11^*$. Then
- $R/0 = 0^* \cup 0^*11^* = R$
- $R/1 = 1^*$
- $R/10 = 1^*/0 = \emptyset$
- $R/11 = 1^*/1 = 1^* = R/1$
- At this point we have closure, so can diagram the DFA.
- R is the initial state.
- The accepting states are those having ϵ as an element.
DFA for $0^* \cup 0^*11^*$
constructed using derivatives of regular expressions
Caution

- Closure can sometimes be tricky to detect.

- Two regular expressions might be equivalent, but not identical.

- The same state is ideally used for both.
Example: Using derivatives to construct DFA

- Suppose $R = (0 \cup 1)^{*}11$.
- $R/0 = (0 \cup 1)^{*}11 = R$
- $R/1 = (0 \cup 1)^{*}11 \cup 1$ (note: 2nd case of rule)
- $R/10 = (R/1)/0 = R$
- $R/11 = (R/1)/1 = (0 \cup 1)^{*}11 \cup 1 \cup \varepsilon$
- $R/110 = R$
- $R/111 = R/11$
Regular Expression Identities

- \(R \cup S = S \cup R \)
- \(R (S T) = (R S) T \)
- \((R \cup S)T = RT \cup ST \)
- \(T(R \cup S) = TR \cup TS \)
- \(RR^* = R^*R \)
- If \(\varepsilon \in L(R) \) then \(RR^* = R^* \)
- \(\varepsilon \cup R^* = R^* \)
- \(\varepsilon \cup RR^* = R^* \)
- \((\varepsilon \cup R \cup R^2 \cup \ldots \cup R^{n-1}) (R^n)^* = R^*, \) for every \(n \)
- \(\varepsilon R = R \)
- \(R\varepsilon = R \)
- \((R^*)^* = R^* \)
- \(R^*R^* = R^* \)
- \(R \cup R^* = R^* \)
- \((R \cup S)^* = (R^*S)^* \)
- \((R \cup S)^* = (RS^*)^* \)
- \(R(SR)^* = (RS)^*R \)
- \(\varnothing^* = \varepsilon \)
How to Prove RE Identities

- Pretend the regular expression variables are letters of an alphabet.

- Prove the corresponding DFA for the left- and right-hand sides equivalent.
Example: \(R(SR)^* = (RS)^*R \)

- DFA’s for \(r(sr)^* \) and \((rs)^*r \)
Arden’s Rule

- The smallest **solution** for \(X \) of the RE **equation**
 \[X = B \cup AX \]
 is \(X = A^*B \).

If \(\varepsilon \notin L(A) \) then the solution is unique.

- Intuition: \(X = B \cup AX = B \cup A(B \cup AX) \)
 \[= B \cup AB \cup A^2X = B \cup AB \cup A^2(B \cup AX) \]
 \[= B \cup AB \cup A^2B \cup A^3X = \ldots \subseteq A^*B \]

- Arden’s rule is implicit in the derivation of a regular expression from a DFA
Arden’s Rule Illustrated

\[X = B \cup AX \]

This is an example of a “fixed point” theorem.
Alternate Conversion of DFA to RE

- Use Arden’s Rule + Gaussian Elimination Pattern
Non-Identities

- \((R \cup S)^* = R^* \cup S^*\)
Regular Expressions in Software Tools

<table>
<thead>
<tr>
<th>Utility</th>
<th>Regular Expression Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>vi</td>
<td>Basic</td>
</tr>
<tr>
<td>sed</td>
<td>Basic</td>
</tr>
<tr>
<td>grep</td>
<td>Basic</td>
</tr>
<tr>
<td>csplit</td>
<td>Basic</td>
</tr>
<tr>
<td>dbx</td>
<td>Basic</td>
</tr>
<tr>
<td>dbxtool</td>
<td>Basic</td>
</tr>
<tr>
<td>more</td>
<td>Basic</td>
</tr>
<tr>
<td>ed</td>
<td>Basic</td>
</tr>
<tr>
<td>expr</td>
<td>Basic</td>
</tr>
<tr>
<td>lex</td>
<td>Basic</td>
</tr>
<tr>
<td>pg</td>
<td>Basic</td>
</tr>
<tr>
<td>nl</td>
<td>Basic</td>
</tr>
<tr>
<td>rdist</td>
<td>Basic</td>
</tr>
<tr>
<td>awk</td>
<td>Extended</td>
</tr>
<tr>
<td>nawk</td>
<td>Extended</td>
</tr>
<tr>
<td>egrep</td>
<td>Extended</td>
</tr>
<tr>
<td>EMACS</td>
<td>EMACS Regular Expressions</td>
</tr>
<tr>
<td>PERL</td>
<td>PERL Regular Expressions</td>
</tr>
</tbody>
</table>
Example, using program egrep

- egrep = “Extended Global Regular Expressions Print”

- (This is a Unix program. Windows users can use it in Cygwin.)

- This program identifies **lines** in a file that **contain** a match a regular expression on the command line, e.g. to match lines containing the literal letter “x”

 egrep x /usr/share/dict/propernames
A sample file: /usr/share/dict/propernames

$ head /usr/share/dict/propernames
Aaron
Adam
Adlai
Adrian
Agatha
Ahmed
Ahmet
Aimee
Amy
Ami

head is first 10

$ egrep x /usr/share/dict/propernames
Alex
Alexander
Alexis
Axel
Felix
Lex
Marnix
Max
Rex
Roxana
Roxane
Roxanne
Roxie
Match lines containing “aa”

$ egrep aa /usr/share/dict/propernames
Isaac
Lievaart
Maarten
Raanan
Saad
Sjaak
Use | for Union

Because | is significant to the operating system (for “piping”), regular expressions using it must be quoted.

```
$ egrep 'az|za' /usr/share/dict/propernames
Elizabeth
Hazel
Kazuhiro
Liza
Ozan
Suzan
Suzanne
```
Anchor Characters ^ and $

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>^A</td>
<td>"A" at the beginning of a line</td>
</tr>
<tr>
<td>A$</td>
<td>"A" at the end of a line</td>
</tr>
<tr>
<td>A^</td>
<td>"A^" anywhere on a line</td>
</tr>
<tr>
<td>$A</td>
<td>"$A" anywhere on a line</td>
</tr>
<tr>
<td>^^</td>
<td>"^" at the beginning of a line</td>
</tr>
<tr>
<td>$$</td>
<td>"$" at the end of a line</td>
</tr>
</tbody>
</table>
Example: Lines ending in “ay”

```
$ egrep ay$ /usr/share/dict/propernames
Clay
Fay
Jay
Kay
Lindsay
Murray
Ray
Sanjay
Vijay
```
Wild Card .

. by itself matches any single character except end-of-line
Example: 4-letter lines beginning with “A”

$ egrep ^A...$ /usr/share/dict/propernames
Adam
Alan
Alex
Amir
Amos
Andy
Anna
Anne
Arne
Axel
Use [] to enumerate several characters

$egrep 'of[aeiou]' /usr/share/dict/propernames
Christofer
Hiroyumi
Sofia
Sofoklis

Here we want ‘of’, but only if followed by vowel
Matching Ranges of Characters

[A-Z]
[a-z]
[0-9]
[A-Za-z0-9_]
Iterators

? matches 0 or 1 instances of what comes before

+ matches 1 or more instances

* matches 0 or more instances
For further info

http://en.wikipedia.org/wiki/Regular_expression

http://www.grymoire.com/Unix/Regular.html

http://www.regular-expressions.info/reference.html

$man egrep

$man regex