Blocks World Logic

Robert Keller
February 2012
Table-Top Universes

- Blocks are identified by their color (red, blue, green, yellow, etc), except for
- table, which is considered to be one huge block.
- Different universes may contain different blocks.
- table will be in every universe.
The *on* predicate

\(\text{on}(x, y) \) means block \(x \) is on top of block \(y \)

In this universe:

- \(\text{on}(\text{blue, red}) \)
- \(\text{on}(\text{yellow, green}) \)
- \(\text{on}(\text{red, table}) \)
- \(\text{on}(\text{green, table}) \)
The Blocks Language BL

• The blocks language BL is a first-order language.

• It will contain a 2-ary predicate symbol o.

• It will contain constants: b, g, r, t, y

• Other symbols will be introduced later.
Atomic Formulas in BL

Examples of atomic formulas:

- $o(b, r)$
- $o(r, b)$
- $o(y, g)$
- $o(y, g)$
- $o(r, t)$

because o is a 2-ary predicate symbol, b, g, r, t, y are constant symbols
Non-Atomic Formulas

Examples of non-atomic formulas:
- $o(b, r) \lor o(r, b)$
- $o(y, g) \land o(r, b)$
- $o(y, g) \rightarrow o(r, t)$
- $\neg o(b, t)$
Interpretations

• Each interpretation of a BL formula consists of (Δ, μ), where

 Δ is a blocks world universe
 (set of blocks)

 μ associates elements, predicates, etc. with symbols in BL
Example

• Formula: $o(b, r)$

• An interpretation I_1:
 $\Delta = \{\text{blue, green, red, table, yellow}\}$
 $\mu(b) = \text{blue}, \mu(g) = \text{green},$
 $\mu(r) = \text{red}, \mu(t) = \text{table}, \mu(y) = \text{yellow}$
 $\mu(o) = \text{on}$, where on is defined
 by the following picture
\[l_1[o(b, r)] = \mu(o)(l_1[b], l_1[r]) \\
= \text{on}(l_1[b], l_1[r]) \\
= \text{on}(\mu(b), \mu(r)) \\
= \text{on}(\text{blue, red}) \\
= T \text{ (true)} \]
Temporary convention

• For now, we will assume that each interpretation has:
 \[\Delta = \{\text{blue, green, red, table, yellow}\} \]

 \[\mu(b) = \text{blue}, \mu(g) = \text{green}, \]
 \[\mu(r) = \text{red}, \mu(t) = \text{table}, \mu(y) = \text{yellow} \]

 but we may have a different \(\mu(o) \)
\[l_2[o(b, r)] = \]
\[l_2[o(g, y)] = \]
\[l_2[o(g, y) \rightarrow o(b, r)] = \]
\[l_2[\forall u \forall v \neg (o(u, v) \land o(v, u))] = \]

\[l_2 \text{ is:} \]
\[l_3[o(b, r)] = \]
\[l_3[o(g, y)] = \]
\[l_3[o(g, y) \rightarrow o(b, r)] = \]

\[l_3[\forall u \forall v \neg(o(u, v) \land o(v, u))] = \]

\[l_3 \text{ is:} \]
Closed Formula + Interpretation gives Truth Value

• What if formula is not closed, e.g.
 \(\neg (o(u, v) \land o(v, u)) \)

• If the formula is being considered in isolation, we close it by prepending \(\forall u \forall v \).

• The meaning is as if the variables were \(\forall u \forall v \) quantified.
Equality

• Equality = is a 2-ary predicate symbol.

• By convention, for every interpretation, \(\mu(=) \) is the **identity predicate** on the universe \(\Delta \).

• That is, \(\mu(=) = \{(\text{blue, blue}), (\text{green, green}), (\text{red, red}), (\text{table, table}), (\text{yellow, yellow})\} \)
$I_3[(o(r, x) \rightarrow (x = b))] =$

$I_3[(o(x, y) \rightarrow (x = g))] =$

I_3 is:
$l_3[\exists x \ o(r, \ x)] = l_3[(\exists x \ o(x, \ g)] = l_3$ is:
$I_4[\forall u \exists x o(x, u)] = I_4$ is:
$I_4[\forall u \exists x \ o(x, u) \lor u = b] =$

I_4 is:
\[I_4[\forall u \exists x \ o(u, x)] = \]

\[I_4 \text{ is:} \]
Devise Some **Universal** Formulas for Blocks Interpretations

- By universal, I mean a formula that is true in every blocks world interpretation
- You are allowed to add new predicates

- Example:

\[\forall u \exists x \circ(u, x) \vee (u = t) \]

because every block is either on another block, or on the table.
More Examples

• $\forall x \neg o(x, x)$
New predicate \(a \)

- \(a(u, x) \) means \(u \) is “above” \(x \).
New predicate \(a \)

\(a(u, x) \) means \(u \) is “above” \(x \)

\(l_3[(a(r, b)] = T \quad l_3[(a(r, y)] = T \)
Now for blocks world or any other

• Devise some formulas that are true, regardless of the interpretation.

• These are called valid or universally valid.

• Example: \((\forall u \ o(u, u)) \rightarrow (\forall u \ \exists x \ o(u, x))\)