Multi-Layer Networks & Backpropagation

(Sections 6.3-6.4 in Text)
Multi-Layer Networks

- Generally much more versatile than single neurons

- No linear-separability requirement for problem space

- Training approach is less obvious and potentially more time consuming.
Multi-Level Networks

- Several varieties, the most common of which is known as any of these:
 - MLP (Multi-Level Perceptron)
 - Feed-forward network
 - Backpropagation Network (alluding to a common method of *training* these networks; other training methods could conceivably be used, so this is not a good name for the networks themselves.)
In the text the input is counted as a layer, so this is 3-layers. The real layers other than the output are called “hidden” layers.
Demo nnd11nf
(nf = network function)

- Shows a simple 2-level network:
 - 1 input, 1 output
 - 2 neurons in first layer, with 1 weight and 1 bias each, logsig activation function
 - 1 neuron in output layer, with 2 weights and 1 bias
 - output activation function selectable from: purelin (identity), tansig, logsig

- Plot is network output vs. input
Demo nnd11nf

Alter network weights and biases by dragging the triangular shaped indicators. Drag the vertical line in the graph below to find the output for a particular input. Click on [Random] to set each parameter to a random value.
nnd11nf Nominal Response

![Graph showing the nnd11nf Nominal Response. The graph plots the output against the input, with a smooth curve that transitions from one value to another as the input changes.]
Example Parameter Variations

\begin{align*}
0 \leq b_2^1 &\leq 20 \\
-1 \leq w_{1,1}^2 &\leq 1 \\
-1 \leq w_{1,2}^2 &\leq 1 \\
-1 \leq b_2^2 &\leq 1
\end{align*}
Function Approximation Demo

Click the [Train] button to train the logsig-linear network on the function at left. Use the slide bars to choose the number of neurons in the hidden layer and the difficulty of the function.
Generalization Demo

Click the [Train] button to train the logsig-linear network on the data points at left. Use the slide bar to choose the number of neurons in the hidden layer.
Training an MLP?

- With a single linear neuron, we have an Adaline. We know how to adapt it. A similar approach can be used for a logsig neurone.

- With a multi-layer network, it is less obvious. For one thing, what is the “error” for the neurons in non-final layers? Without these, we don’t know how to adjust.

- This is called the “credit assignment” problem (maybe should be “blame assignment”).
Discovery of Backpropagation

- Werbos, in his Harvard PhD thesis in 1974 found a method, but it was not widely disseminated.

- Rumelhart and McClelland, in 1985, discovered the method, presumably independently, and popularized it under the current name.

- In mathematics, such methods are in the category of “optimization”.
Backpropagation

- The technique is gradient descent, as explained for Adalines.

- However, the computation of the gradient was less clear.
Backpropagation Training Cycle

- **Forward propagation**: Derive the activation values (the inputs to the activation functions) at each neuron, and the final output.

- **Compute the error** in the output.

- **Backpropagate** the error through the network to get gradient values, aka “sensitivities”, at each neuron.

- Use the sensitivities to **derive weight changes**.

- Apply the weight changes.
Backpropagation Training Cycle

- Backpropagate is mathematically a lot like forward propagate, with sensitivities instead of signal values.

- The sensitivities are the partial derivatives of the MSE with respect to the activation values.

- Basically both are iterated matrix multiplications and applications of the activation functions of the neurons or their derivatives.
Multi-Layer Network

Each box has a row-vector of weights and a bias.

Each layer has a matrix of weights and a column vector of biases.
Multi-Layer Network

- Given an input vector, can compute the outputs.
- Given a sample, can compute the errors in output.
- Knowing gradient, can adjust the weights.
- Big Question: How to compute the gradient?
Recall that the gradient consists of components \(\frac{\partial J}{\partial w} \)
where \(J \) is the mean-squared error and \(w \) is one of the weights (including biases) in the network.

For the generalized Adaline, with activation function \(f \), we previously derived the on-line approximation:

\[
\frac{\partial J}{\partial w_i} \approx -2 \varepsilon x_i f' (v)
\]

where \(x_i \) is the input corresponding to weight \(w_i \), \(v \) is the weighted sum of inputs, and \(\varepsilon \) is the error. This works as is for the multi-layer case at the output layer.
Previous Derivation

- \(\text{MSE} = J = \mathbb{E}[(\text{desired-actual})^2] \)
 expected value of squared error

- \(\frac{\partial J}{\partial w_i} = \frac{\partial}{\partial w_i} \sum (\text{desired-actual})^2 / n \)
 \[= (1/n) \sum 2(\text{desired-actual}) \frac{\partial}{\partial w_i} (\text{desired-actual}) \]
 \[= - \frac{2}{n} \sum (\text{desired-actual}) \frac{\partial}{\partial w_i} \text{actual} \]

- But actual = \(f(\sum w_j x_j) \), so
 \[\frac{\partial}{\partial w_i} \text{actual} = \frac{\partial}{\partial w_i} f(\sum w_j x_j) \]
 \[= f' (\sum w_j x_j) \frac{\partial}{\partial w_i} (\sum w_j x_j) \]
 \[= x_i f' (\sum w_j x_j) \]

- Hence \(\frac{\partial J}{\partial w_i} = - \frac{2}{n} \sum (\text{desired-actual}) x_i f' (\sum w_j x_j) \)
 where the **outer summation is over all patterns**.
Batch vs. On-Line

- J = Mean Squared Error

- **Batch**: $\frac{\partial J}{\partial w_i} = - \frac{2}{n} \sum (\text{desired-actual}) x_i f' (\sum w_j x_j)$
 where the outer summation is over all patterns.

- **On-line** is an approximation using just one pattern:
 $\frac{\partial J}{\partial w_i} \approx - 2(\text{desired-actual}) x_i f' (\sum w_j x_j)$

- We can use the on-line approximation for simplicity, then extend it to batch by summation.
Inside one neuron at the output layer

Here \(n \) is used for the **activation** or “net” value, as it is sometimes called.

\[
\begin{align*}
\frac{\partial J}{\partial w_i} &= \left(\frac{\partial J}{\partial n} \right) \left(\frac{\partial n}{\partial w_i} \right) \\
&= \left(\frac{\partial (d-f(n))^2}{\partial n} \right) \left(\frac{\partial n}{\partial w_i} \right) \\
&= -2 \varepsilon f'(n) x_i \\
&= s x_i
\end{align*}
\]

using the chain rule

differentiating

\(f' \) is the derivative

where \(s = \left(\frac{\partial J}{\partial n} \right) = -2 \varepsilon f'(n) \) is called the **sensitivity.**
Chain Rule Refresher

The derivative of a composition of two functions is the product of their derivatives.

Example: Compose f, n:
\[
\frac{df(n(w))}{dw} = \frac{df(n)}{dn} \times \frac{dn(w)}{dw}
\]

Suppose \(f(n) = \cos(n) \), \(n = e^{2w} \), \(f(n(w)) = \cos(e^{2w}) \)

\[
\frac{df(n(w))}{dw} = \frac{df(n)}{dn} \times \frac{dn(w)}{dw} = (-\sin(n))(2e^{2w}) = (-\sin(e^{2w}))(2e^{2w})
\]

Application to the Gradient Calculation in Matrix Form:

\[
\frac{\partial J}{\partial w_{i,j}^m} = \frac{\partial J}{\partial n_i^m} \times \frac{\partial n_i^m}{\partial w_{i,j}^m}
\]

w is weight matrix
superscript m is the output layer index,
i is the neuron index,
j is the input index
Multi-Variate Chain Rule

The rule is shown here for 2-variable functions, but extends to n-variable functions straightforwardly.

Let \(x = x(t) \) and \(y = y(t) \) be differentiable at \(t \) and suppose that \(z = f(x, y) \) is differentiable at the point \((x(t), y(t)) \). Then \(z = f(x(t), y(t)) \) is differentiable at \(t \) and

\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}.
\]

http://www.math.hmc.edu/calculus/tutorials/multichainrule/
Example of Multi-Variate Chain Rule

Let \(z = x^2y - y^2 \) where \(x \) and \(y \) are parametrized as \(x = t^2 \) and \(y = 2t \).

Then

\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}
\]

\[
= (2xy)(2t) + (x^2 - 2y)(2)
\]

\[
= (2t^2 \cdot 2t)(2t) + ((t^2)^2 - 2(2t)) (2)
\]

\[
= 8t^4 + 2t^4 - 8t
\]

\[
= 10t^4 - 8t.
\]

http://www.math.hmc.edu/calculus/tutorials/multichainrule/
Chain Rule in Vector Form

\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}
\]

RHS can be rewritten as an inner product

\[[\partial z/\partial x, \partial z/\partial y] \cdot [\partial x/\partial t, \partial y/\partial t] \]

(The left term is recognized as the gradient of \(z(x, y) \) wrt \((x, y)\).)
What does any of this have to do with neural networks?

The key to backpropagation is the multivariate (or vector) form of the chain rule.

With all training samples fixed, the error is a function of only the weights.
For fixed input/output samples, error is a function of weights. More precisely, the error at the output layer is a function of the weights in

- the output layer and
- the inputs to the output layer (which are the outputs of the hidden layer).
For fixed input/output samples, error is a function of weights.

- The outputs of the hidden layer are a function of
 - the weights in the hidden layer and
 - the inputs to the hidden layer.

- If the network has only one hidden layer, the inputs to that layer are the inputs to the network (which are part of the fixed samples).

- Otherwise they are the outputs from the layer before, etc.
Perspective from activation values

- Another view is that the error at the output layer is a function of the **activation or “net” values** at that layer which are inputs to the activation functions at that layer.

- Those inputs are a function of the **net values** at the previous layer, and so on.

- We can express errors in terms of net values at every layer, called **sensitivities**.
Last Layer Net Value

\[n \text{ is the activation or "net" value} \]

\[n = \text{net} \]
Error in an Arbitrary Layer

Error as a function of net values is $J(n_1, n_2, \ldots, n_m)$.

\[J(n_1, n_2, \ldots, n_m) \]
Error is \(J(n_1, n_2, \ldots, n_m) \)

But each \(n_i \) is a function of

\(n'_1, n'_2, \ldots, n'_k \), i.e.

\(n_i(n'_1, n'_2, \ldots, n'_k) \)

Namely \(n_i \) is the composition of the weighted sums of the activation functions applied to the net values \(n'_j \):

\[
n_i = w_{i1}f(n'_1) + w_{i2}f(n'_2) + \ldots w_{ik}f(n'_k)
\]
Use the Chain-Rule to Compute Gradient based on Net Values

Error is $J(n_1, n_2, \ldots, n_m)$

We want to find the gradient ∇J, and we know how to at the output layer:
\[-2 \varepsilon f'(n)\]

But each $n_i = n_i(n'_1, n'_2, \ldots, n'_k)$, a function based on the inter-layer weights and the previous layer activation function.

Derive $\nabla n' J$ here from $\nabla n J$ here.

$\frac{\partial J}{\partial n'_j}$ components $\frac{\partial J}{\partial n_i}$ components
How to compute sensitivity $\frac{\partial J}{\partial n'_i}$ from sensitivities $\frac{\partial J}{\partial n_1}$, \ldots, $\frac{\partial J}{\partial n_m}$:

We know $J = J(n_1, n_2, \ldots, n_m)$, and each n_i is a function of n'_1, n'_2, \ldots, n'_k

i.e. $J = J(n_1(n'_1, n'_2, \ldots, n'_k), \ldots, n_m(n'_1, n'_2, \ldots, n'_k))$

The multivariate chain rule says

$\frac{\partial J}{\partial n'_j} = (\frac{\partial J}{\partial n_1} \cdot \frac{\partial n_1}{\partial n'_j}) + \ldots + (\frac{\partial J}{\partial n_m} \cdot \frac{\partial n_m}{\partial n'_j})$.
But $n_i = w_{i1} f(n'_1) + w_{i2} f(n'_2) + \ldots w_{ik} f(n'_k)$ from the network structure.

so $\frac{\partial n_i}{\partial n'_j} = \frac{\partial}{\partial n'_j} (w_{i1} f(n'_1) + w_{i2} f(n'_2) + \ldots w_{ik} f(n'_k))$

$= w_{ij} f(n'_j)$ (every term drops except the j^{th})

Thus $\frac{\partial J}{\partial n'_j} = \frac{\partial J}{\partial n_1} \cdot w_{1j} f(n'_j) + \ldots + \frac{\partial J}{\partial n_m} \cdot w_{mj} f(n'_j)$

i.e. $\frac{\partial J}{\partial n'_j} = w_{1j} f(n'_j) \cdot \frac{\partial J}{\partial n_1} + \ldots + w_{mj} f(n'_j) \cdot \frac{\partial J}{\partial n_m}$

i.e. $s'_j = w_{1j} f(n'_j) \cdot s_1 + \ldots + w_{mj} f(n'_j) \cdot s_m$

We now have the sensitivities at the earlier layer computable from the sensitivities at the following layer.
Utility of Sensitivities s in Deriving Gradient wrt Weights

\[
\frac{\partial J}{\partial w_i} = (\frac{\partial J}{\partial n}) \left(\frac{\partial n}{\partial w_i} \right)
\]

\[
= (\frac{\partial J}{\partial n}) \frac{\partial}{\partial w_i} (w_1 x_1 + w_2 x_2 + \ldots + w_k x_k)
\]

\[
= (\frac{\partial J}{\partial n}) x_i
\]

\[
= s x_i \quad \text{where } x_i \text{ is the } i^{\text{th}} \text{ input to this neuron.}
\]

$s = \frac{\partial J}{\partial n}$ is meaningful at any net value n in the network, not just at the final layer.

There is one s value per neuron. The gradients wrt weights are derivable from the sensitivities using this equation.
Backward Propagation of Sensitivity

sensitivities

known

desired

\(w_i \)
Express desired sensitivity as a weighted sum of known sensitivities:

\[s_i = f'(n) \sum w_j s_j \]

In effect, this uses the weight matrix transposed.

Biases do not play a role in the backpropagation step.
3-Layer Net from Text (Fig. 6.4)
MSE = J = E[(desired-actual)^2] (The author multiples by a factor of 1/2 and does not average.) so gets, at the outputs z_k:

$$-\frac{\partial J}{\partial u_{ki}} = y_i (d_k - z_k) f'(\Sigma u_{ki} y_i)$$

$$= y_i g_k$$

where variable $g_k = (d_k - z_k) f'(\Sigma u_{ki} y_i)$ is introduced to represent the sensitivity at the k^{th} output unit.

This is implied in B.6.5.5, $\Delta u_{ki} = a g_k y_i$ (a is the learning rate).

Note: The subscripts j, i, and k identify the units at the input, hidden, and output layers respectively.
Using the chain rule, the sensitivities at the hidden layer i are derived:

$$g_i = f'(\Sigma v_{ij} x_j) \Sigma g_k u_{ki}$$

This is B.6.5.11.

The use of the above is in 6.5.4, the weight change for the hidden layer:

$$\Delta v_{ij} = a g_i x_j$$ (a is the learning rate).

Again: The subscripts j, i, k identify the units at the input, hidden, and output layers respectively.
Math Box 6.5

- 6.5.1 defines the error function.

- 6.5.2 and 6.5.3 define weight adjustments as negatives of gradients wrt weights.

- 6.5.4 and 6.5.5 expand 6.5.2 and 6.5.3 to use sensitivities g_i and g_k times unit inputs.

- 6.5.6 Derives output layer sensitivities g_k.

- 6.5.7-6.5.11 use the chain rule to derive hidden layer sensitivities g_i.
Textbook’s Backpropagation Script
backpropTrain.m is keyed to Fig. 6.4

Training is on-line, not batch.
a=0.1;
tol=0.1;
b=1;
nIts=100000;
nHid=1;
[nPat,nIn]=size(InPat);
[nPat,nOut]=size(DesOut);
V=rand(nHid,nIn+1)*2-1;
U=rand(nOut,nHid+1)*2-1;
deltaV=zeros(nHid,nIn+1);
deltaU=zeros(nOut,nHid+1);
maxErr=10;

for c=1:nIts,
 pIndx=ceil(rand*nPat);
 d=DesOut(pIndx,:);
 x=[InPat(pIndx,:) b]';
 y=1./(1+exp(-V*x));
 y=[y' b]';
 z=1./(1+exp(-U*y));
 e=d-z';
 if max(abs(e))>tol,
 x=x';y=y';z=z';
 zg=e.*(z.*(1-z));
 yg=(y.*(1-y)).*(zg*U);
 deltaU=a*zg'*y;
 deltaV=a*yg(1:nHid)'*x;
 U=U+deltaU;
 V=V+deltaV;
 end
end
Important Steps

<table>
<thead>
<tr>
<th>Input</th>
<th>Forward</th>
<th>Backward</th>
<th>Adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>pIndx=ceil(rand*nPat); d=DesOut(pIndx,:); x=[InPat(pIndx,:) b]';</td>
<td>y=1./(1+exp(-Vx)); y=[y' b]'; z=1./(1+exp(-Uy)); e=d-z';</td>
<td>x=x'; y=y'; z=z'; zg=e.(z.(1-z)); yg=(y.(1-y)).(zg*U);</td>
<td>deltaU=a*zg'y; deltaV=ayg(1:nHid)'*x; U=U+deltaU; V=V+deltaV;</td>
</tr>
</tbody>
</table>

% choose pattern pair at random
% set desired output to chosen output
% append the bias to the input vector
% compute the hidden unit response
% append the bias to the hidden unit vector
% compute the output unit response
% find the error vector
% convert column to row vectors
% compute the output error signal
% compute hidden error signal
% compute the change in hidden-output weights
% compute change in input-hidden weights
% update the hidden-output weights
% update the input-hidden weights
Examples

- Try with xor, parity, etc.
Express desired sensitivity as a weighted sum of known sensitivities:

\[s_i = f'(n) \sum w_j s_j \]

If \(W \) is the weight matrix of the latter layer, and \(s \) is the corresponding vector of sensitivities, then the vector \(s^* \) of sensitivities at the former layer is computable by

\[s^* = f'(n) \cdot (W^T s) \]

where \(\cdot \) is pointwise multiplication.
Alternate Matrix-Vector Form expressed using dot for derivatives

Express desired as a weighted sum of known:

\[
\mathbf{s}^m = \mathbf{F}^m (\mathbf{n}^m) (\mathbf{W}^{m+1})^T \mathbf{s}^{m+1}
\]

Note: **over-dot** means derivative.
Correctness

\[s = f'(n) \sum w_j s_j \]

layer \(m+1 \) is layer after

\[s = \partial J / \partial n^m \]

layer \(m \) is layer before

\[= \sum (\partial n^{m+1} / \partial n^m) \left(\partial J / \partial n^{m+1} \right) \]

the \textit{vector} form of the chain rule

\[s^m = \frac{\partial J}{\partial n^m} = \left(\frac{\partial n^{m+1}}{\partial n^m} \right)^T \frac{\partial J}{\partial n^{m+1}} \]

Vector Form for entire \(m^{\text{th}} \) layer:

\[s^m = F'(n^m)(W^{m+1})^T s^{m+1} \]
Jacobian Matrix

In the vector form

\[s^m = \frac{\partial J}{\partial n^m} = \left(\frac{\partial n^{m+1}}{\partial n^m} \right)^T \frac{\partial J}{\partial n^{m+1}} \]

derivatives times weights transposed

The s subscripts here refer to the size of the layer and are not related to sensitivities.
Vector Form

\[s^m = \frac{\partial J}{\partial \mathbf{n}^m} = \left(\frac{\partial \mathbf{n}^{m+1}}{\partial \mathbf{n}^m} \right)^T \frac{\partial J}{\partial \mathbf{n}^{m+1}} = \mathbf{F}^m(\mathbf{n}^m)(\mathbf{W}^{m+1})^T \frac{\partial J}{\partial \mathbf{n}^{m+1}} \]

\[s^m = \mathbf{F}^m(\mathbf{n}^m)(\mathbf{W}^{m+1})^T s^{m+1} \]

\[\frac{\partial \mathbf{n}^{m+1}}{\partial \mathbf{n}^m} = \mathbf{W}^{m+1} \mathbf{F}^m(\mathbf{n}^m) \quad \mathbf{F}^m(\mathbf{n}^m) = \begin{bmatrix} f^m(n_1^m) & 0 & \ldots & 0 \\ 0 & f^m(n_2^m) & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & f^m(n_{S^m}^m) \end{bmatrix} \]
Fully-Subscripted Alternatives to the Vector Forms

\[n_i^m = \sum_{j=1}^{s_{m-1}} w_{i,j}^m a_{j}^{m-1} + b_i^m \]

\[\frac{\partial n_i^m}{\partial w_{i,j}^m} = a_j^{m-1} \quad \frac{\partial n_i^m}{\partial b_i^m} = 1 \]

Sensitivity

\[s_i^m = \frac{\partial J}{\partial n_i^m} \]

Gradient

\[\frac{\partial J}{\partial w_{i,j}^m} = s_i^m a_j^{m-1} \quad \frac{\partial J}{\partial b_i^m} = s_i^m \]
Fully-Subscripted Alternatives to the Vector Forms

\[
\frac{\partial n_i^{m+1}}{\partial n_j^m} = \frac{\partial}{\partial n_j^m} \left(\sum_{l=1}^{S^m} w_{i,l}^m a_i^m + b_i^{m+1} \right) = w_{i,j}^{m+1} \frac{\partial a_j^m}{\partial n_j^m}
\]

\[
\frac{\partial n_i^{m+1}}{\partial n_j^m} = w_{i,j}^{m+1} \frac{\partial f^m(n_j^m)}{\partial n_j^m} = w_{i,j}^{m+1} f_i^m(n_j^m)
\]

\[
f_i^m(n_j^m) = \frac{\partial f^m(n_j^m)}{\partial n_j^m}
\]
Vector Form for Last Layer, \(M \)

\[
\begin{align*}
 s^M_i &= \frac{\partial \hat{F}}{\partial n^M_i} = \frac{\partial (t - a)^T (t - a)}{\partial n^M_i} = \frac{\partial}{\partial n^M_i} \sum_{j=1}^{S^M} (t_j - a_j)^2 \\
 &= -2(t_i - a_i) \frac{\partial a_i}{\partial n^M_i} \\
 \frac{\partial a_i}{\partial n^M_i} &= \frac{\partial a^M_i}{\partial n^M_i} = \frac{\partial f^M(n^M_i)}{\partial n^M_i} = f^M(n^M_i) \\
 s^M_i &= -2(t_i - a_i) f^M(n^M_i) \\
 s^M &= -2 \hat{F}^M(n^M)(t - a)
\end{align*}
\]
Backpropagation Training Cycle

- **Forward propagation**: Derive the activation values (the inputs to the activation functions) at each neuron, and the final output.
- **Compute the error** in the output.
- **Backpropagate** the error through the network to get “sensitivities” at each neuron. (The gradient approximation is derivable from the sensitivities.)
- Use the sensitivities to **derive weight changes**.
- Apply the weight changes.
Backpropagation (Sensitivities)

The sensitivities are computed by starting at the last layer, and then propagating backwards through the network to the first layer.

\[s^M \rightarrow s^{M-1} \rightarrow \ldots \rightarrow s^2 \rightarrow s^1 \]

\[s^M = -2 \dot{F}^M (n^M) (t - a) \]

\[s^m = \dot{F}^m (n^m) (W^{m+1})^T s^{m+1} \]

\[\dot{F}^m (n^m) = \begin{bmatrix} f^m(n_1^m) & 0 & \cdots & 0 \\ 0 & f^m(n_2^m) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f^m(n_{S^m}^m) \end{bmatrix} \]

\[\text{basis} \]

\[\text{induction step} \]

\[\text{diagonal matrix of activation function derivative values} \]
Weight and Bias Update

(Here we are using α instead of η for the learning rate.)

\[W^m(k + 1) = W^m(k) - \alpha s^m (a^{m-1})^T \]

Bias update is parallel to the above

\[b^m(k + 1) = b^m(k) - \alpha s^m \]
Fully-Subscripted Version of Weight Update

\[w_{i,j}(k+1) = w_{i,j}(k) - \alpha s_i a_j^{m-1} \]
\[b_i^m(k+1) = b_i^m(k) - \alpha s_i \]

\[W^m(k+1) = W^m(k) - \alpha s^m (a^{m-1})^T \]
\[b^m(k+1) = b^m(k) - \alpha s^m \]

\[s^m = \frac{\partial J}{\partial n^m} = \begin{bmatrix} \frac{\partial J}{\partial n_1^m} \\ \frac{\partial J}{\partial n_2^m} \\ \vdots \\ \frac{\partial J}{\partial n_s^m} \end{bmatrix} \]
Backpropagation Summary

Forward Propagation from Input Pattern:

\begin{align*}
a^0 &= p \\
a^{m+1} &= f^{m+1}(W^{m+1}a^m) \quad m = 0, 2, \ldots, M - 1 \\
a &= a^M
\end{align*}

Backpropagation from Error:

\begin{align*}
s^M &= -2F'(n^M)(t - a) \\
s^m &= F'(n^m)(W^{m+1})s^{m+1} \quad m = M - 1, \ldots, 2, 1
\end{align*}

Weight Update

\begin{align*}
W^m(k+1) &= W^m(k) - \alpha s^m(a^{m-1})^T \\
b^m(k+1) &= b^m(k) - \alpha s^m
\end{align*}
BP Calculation Demo nnd11bc

Neural Network DESIGN Backpropagation Calculation

Input: \(p = 1.0 \)
Target: \(t = 1 + \sin(p + 4) = 1.707 \)

Simulate:
- \(a_1 = \text{logsig}(W_1 p + b_1) = [0.321, 0.368] \)
- \(a_2 = \text{purelin}(W_2 a_1 + b_2) = 0.446 \)
- \(e = t - a_2 = 1.281 \)

Backpropagate:
- \(s_2 = ? \)
- \(s_1 = ? \)

Update:
- \(W_1 = ? \)
- \(b_1 = ? \)
- \(W_2 = ? \)
- \(b_2 = ? \)
Worked Numeric Example from nnd11nf

1-2-1 Network

Input → Log-Sigmoid Layer → Linear Layer
Initial Conditions

\[W^1(0) = \begin{bmatrix} -0.27 \\ -0.41 \end{bmatrix} \quad b^1(0) = \begin{bmatrix} -0.48 \\ -0.13 \end{bmatrix} \quad W^2(0) = \begin{bmatrix} 0.09 & -0.17 \end{bmatrix} \quad b^2(0) = \begin{bmatrix} 0.48 \end{bmatrix} \]
Forward Propagation

\[a^0 = p = 1 \]

\[a^1 = f^1(W^1 a^0 + b^1) = \log\text{sig}\left(\begin{bmatrix} -0.27 \\ -0.41 \end{bmatrix} [1] + \begin{bmatrix} -0.48 \\ -0.13 \end{bmatrix}\right) = \log\text{sig}\left(\begin{bmatrix} -0.75 \\ -0.54 \end{bmatrix}\right) \]

\[a^1 = \begin{bmatrix} 1 \\ \frac{1}{1 + e^{-0.75}} \\ 1 \\ \frac{1}{1 + e^{-0.54}} \end{bmatrix} = \begin{bmatrix} 0.321 \\ 0.368 \end{bmatrix} \]

\[a^2 = f^2(W^2 a^1 + b^2) = \text{purelin} \left(\begin{bmatrix} 0.09 & -0.17 \end{bmatrix} \begin{bmatrix} 0.321 \\ 0.368 \end{bmatrix} + \begin{bmatrix} 0.48 \end{bmatrix} \right) = \begin{bmatrix} 0.446 \end{bmatrix} \]

\[e = t - a = \left\{ 1 + \sin\left(\frac{\pi}{4} p\right) \right\} - a^2 = \left\{ 1 + \sin\left(\frac{\pi}{4} 1\right) \right\} - 0.446 = 1.261 \]
Activation Function Derivatives

\[f^1(n) = \frac{d}{dn} \left(\frac{1}{1 + e^{-n}} \right) = \frac{e^{-n}}{(1 + e^{-n})^2} = \left(1 - \frac{1}{1 + e^{-n}} \right) \left(\frac{1}{1 + e^{-n}} \right) = (1 - a^1)(a^1) \]

\[f^2(n) = \frac{d}{dn}(n) = 1 \]
Backpropagation of Sensitivities

\[s^2 = -2F^2(n^2)(t - a) = -2 \left[f^2(n^2) \right](1.261) = -2 \left[1 \right](1.261) = -2.522 \]

\[s^1 = F^1(n^1)(W^2)^T s^2 = \begin{bmatrix} (1 - a_1^1)(a_1^1) & 0 \\ 0 & (1 - a_2^1)(a_2^1) \end{bmatrix} \begin{bmatrix} 0.09 \\ -0.17 \end{bmatrix} \begin{bmatrix} -2.522 \end{bmatrix} \]

\[s^1 = \begin{bmatrix} (1 - 0.321)(0.321) & 0 \\ 0 & (1 - 0.368)(0.368) \end{bmatrix} \begin{bmatrix} 0.09 \\ -0.17 \end{bmatrix} \begin{bmatrix} -2.522 \end{bmatrix} \]

\[s^1 = \begin{bmatrix} 0.218 & 0 \\ 0 & 0.233 \end{bmatrix} \begin{bmatrix} -0.227 \\ 0.429 \end{bmatrix} = \begin{bmatrix} -0.0495 \\ 0.0997 \end{bmatrix} \]
Weight Update

$\alpha = 0.1$

\[
W^2(1) = W^2(0) - \alpha s^2 (a^1)^T = \begin{bmatrix} 0.09 & -0.17 \\ \end{bmatrix} - 0.1 \begin{bmatrix} -2.522 \\ 0.321 \\ 0.368 \\ \end{bmatrix} = \begin{bmatrix} 0.171 & -0.0772 \\ \end{bmatrix}
\]

\[
b^2(1) = b^2(0) - \alpha s^2 = \begin{bmatrix} 0.48 \\ \end{bmatrix} - 0.1 \begin{bmatrix} -2.522 \\ \end{bmatrix} = \begin{bmatrix} 0.732 \\ \end{bmatrix}
\]

\[
W^1(1) = W^1(0) - \alpha s^1 (a^0)^T = \begin{bmatrix} -0.27 & -0.41 \\ \end{bmatrix} - 0.1 \begin{bmatrix} -0.0495 \\ 0.0997 \\ \end{bmatrix} = \begin{bmatrix} -0.265 & -0.420 \\ \end{bmatrix}
\]

\[
b^1(1) = b^1(0) - \alpha s^1 = \begin{bmatrix} -0.48 & -0.13 \\ \end{bmatrix} - 0.1 \begin{bmatrix} -0.0495 \\ 0.0997 \\ \end{bmatrix} = \begin{bmatrix} -0.475 & -0.140 \\ \end{bmatrix}
\]
Exercise

- Derive the backprop equations \textit{symbolically} for a simple 2-layer network.

- Then use the equations to train the network.
Label the Levels

0 1 \(M = 2 \)
Label the Signal Vectors or Lines

Vectors, superscript = level
Label the Signal Vectors or Lines

Lines, superscript = level,

\[a^0_1, a^0_2, a^1_1, a^1_2, a^2_1 \]
Label the Net (Activation) Values

\[
\begin{align*}
\text{n}_1^1 & \quad \text{n}_2^1 \\
\text{n}_1^2 & \quad \text{n}_2^1 \\
\text{a}_0^1 & \quad \text{a}_0^2 \\
\text{a}_1^1 & \quad \text{a}_1^2 \\
\text{a}_2^1 &
\end{align*}
\]
Label the Weights and Biases
Write the forward equations for activations

\[n^1_1 = w_{11} a^0_1 + w_{12} a^0_2 + b^1_1 \]
\[a^1_1 = f(n^1_1) \]

\[n^1_2 = w_{21} a^0_1 + w_{22} a^0_2 + b^1_2 \]
\[a^1_2 = f(n^1_2) \]

\[n^2_1 = w_{11} a^1_1 + w_{12} a^1_2 + b^2_1 \]
\[a^2_1 = f(n^2_1) \]
Write the backward equations for sensitivities

\[s^1_1 = w^2_{11} s^2_1 f'(n^1_1) \]

\[s^1_2 = w^2_{12} s^2_1 f'(n^1_2) \]

\[s^2_1 = -2(d^2_1 - a^2_1) f'(n^2_1) \]
Note

- The summations for the backpropagated sensitivities have only one term in this example, since the following layer has only one neuron.

- Try working it out for, say, three neurons in the last layer.
Write the Equations for Weight and Bias Update

\[\Delta w_{11}^{1} = -\alpha s_{1}^{1} a_{0}^{1} \]
\[\Delta w_{12}^{1} = -\alpha s_{1}^{1} a_{0}^{2} \]
\[\Delta b_{1}^{1} = -\alpha s_{1}^{1} \]
\[\Delta w_{21}^{1} = -\alpha s_{2}^{1} a_{0}^{1} \]
\[\Delta w_{22}^{1} = -\alpha s_{2}^{1} a_{0}^{2} \]
\[\Delta b_{1}^{2} = -\alpha s_{2}^{1} \]

\[\Delta w_{11}^{2} = -\alpha s_{2}^{1} a_{1}^{1} \]
\[\Delta w_{12}^{2} = -\alpha s_{2}^{1} a_{1}^{2} \]
\[\Delta b_{2}^{1} = -\alpha s_{2}^{1} \]
Note on Training vs. Use

- Discontinuous functions such as hardlim, hardlims, etc. don’t have derivatives.

- Therefore we train the network with continuous approximations to these functions, then replace them with the discontinuous versions during usage:

<table>
<thead>
<tr>
<th>usage</th>
<th>train with</th>
</tr>
</thead>
<tbody>
<tr>
<td>hardlim</td>
<td>logsig</td>
</tr>
<tr>
<td>hardlims</td>
<td>tansig</td>
</tr>
</tbody>
</table>
Cybenko’s Universal Approximation Theorem

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenko†

Abstract. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.
Cybenko’s Universal Approximation Theorem

Definition. We say that σ is sigmoidal if

$$
\sigma(t) \to \begin{cases}
1 & \text{as } t \to +\infty, \\
0 & \text{as } t \to -\infty.
\end{cases}
$$

Theorem 1. Let σ be any continuous discriminatory function. Then finite sums of the form

$$
G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)
$$

are dense in $C(I_n)$. In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, $G(x)$, of the above form, for which

$$
|G(x) - f(x)| < \varepsilon \quad \text{for all } x \in I_n.
$$
Worst-Case Difficulty of Backprop

TRAINING A 3-NODE NEURAL NETWORK IS NP-COMPLETE

Avrim L. Blum*
MIT Laboratory for Computer Science
Cambridge, Mass. 02139 USA

Ronald L. Rivest†
MIT Laboratory for Computer Science
Cambridge, Mass. 02139 USA

Copyright 1992 Pergamon Press plc

Figure 1: The 3-Node Network.
Reduction is from Set-Splitting

The following problem, *Set-Splitting*, was proven to be NP-complete by Lovász (Garey and Johnson, 1979).

“Given a finite set S and a collection C of subsets c_i of S, do there exist disjoint sets S_1, S_2 such that $S_1 \cup S_2 = S$ and $\forall i, c_i \not\subseteq S_1$ and $c_i \not\subseteq S_2$?”

The Set-Splitting problem is also known as 2-non-Monotone Colorability or Hypergraph 2-colorability. Our use of this problem is inspired by its use by Kearns, Li, Pitt, and Valiant to show that learning k-term DNF is NP-complete (Kearns et al., 1987) and the style of the reduction is similar.
Blum & Rivest Conclusion

We show for many simple two-layer networks whose nodes compute linear threshold functions of their inputs that training is NP-complete. For any training algorithm for one of these networks there will be some sets of training data on which it performs poorly, either by running for more than an amount of time polynomial in the input length, or by producing sub-optimal weights. Thus, these networks differ fundamentally from the perceptron in a worst-case computational sense.

The theorems and proofs are in a sense fragile; they do not imply that training is necessarily hard for networks other than those specifically mentioned. They do, however, suggest that one cannot escape computational difficulties simply by considering only very simple or very regular networks.

On a somewhat more positive note, we present two networks such that the second is both more powerful than the first and can be trained in polynomial time, even though the first is NP-complete to train. This shows that computational intractability does not depend directly on network power and provides theoretical support for the idea that finding an appropriate network and input encoding for one’s training problem is an important part of the training process.

An open problem is whether the NP-completeness results can be extended to neural networks that use the differentiable logistic linear functions. We conjecture that training remains NP-complete when these functions are used since it does not seem their use should too greatly alter the expressive power of a neural network (though Sontag (1989) has demonstrated some important differences between such functions and thresholds). Note that Judd (1990), for the networks he considers, shows NP-completeness for a wide variety of node functions including logistic linear functions.
If z were a vector-valued function, or x, y, ... were functions of multiple variables, then the vectors on the previous page become matrices of partial derivatives: Jacobians.

The derivative of a composition of two multi-variate functions is the (matrix) product of the Jacobians, analogous to the chain rule for ordinary derivatives of univariate functions.
Jacobian matrix of vector-valued function F

\[J = \begin{bmatrix}
\frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n}
\end{bmatrix}. \]

also notated this way:

\[\frac{\partial (F_1, \ldots, F_m)}{\partial (x_1, \ldots, x_n)} \]

Example

Let F be the transformation defined by

$$x(u,v) = u^2 - 3uv, \quad y(u,v) = u^3 + 5v^2$$

Find J_F evaluated at the point (-1,2).

Solution

First find the Jacobian by calculating the partial derivatives.

$$J_F = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix} = \begin{pmatrix} 2u - 3v & -3u \\ 3u^2 & 10v \end{pmatrix}$$

Now plug in (-1,2) to get:

$$J_F = \begin{pmatrix} -8 & 3 \\ 3 & 20 \end{pmatrix}$$

Finally, multiply by the column vector:

$$\begin{pmatrix} -8 & 3 \\ 3 & 20 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} (-8)(-1) + (3)(2) \\ (3)(-1) + (20)(2) \end{pmatrix} = \begin{pmatrix} 14 \\ 37 \end{pmatrix}$$

http://www.ltcconline.net/greenl/courses/202/multipleIntegration/Jacobians2DTheory.htm
Gradient is the vector-valued derivative of a scalar-valued function.

Jacobian is the matrix-valued derivative of a vector-valued function.

In effect, Jacobian is a stack of gradients, one for each component of the vector-valued function.

[Jacobian J should not be confused with MSE function J.]