Radial Basis Function Networks
Radial Basis Functions

- In contrast to sigmoidal functions, radial basis functions have **radial symmetry** about a **center** in n-space (n = # of inputs).

- The **farther** from the center the input is, the **less** the activation.

- This models the “**on-center off-surround**” phenomenon found in certain **real neurons** in the visual system, for example.
On-Center, Off-Surround

activation

distance

distance
On-Center response captured in a lab experiment
(from http://ferguson.bvu.edu/Perception/Visual_system.html)

(LGN = lateral geniculate nucleus, see next slide)
LGN is a folded sheet of neurons (1.5 million cells), about the size of a credit card but about three times as thick, found on each side of the brain.

The ganglion cells of the LGN transform the signals into a temporal series of discrete electrical impulses called action potentials or spikes.

The ganglion cell responses are measured by recording the temporal pattern of action potentials caused by light stimulation.

(continued)
The receptive fields of the LGN neurons are **circularly symmetric** and have the same **center-surround** organization.

The algebraic sum of the center and surround mechanisms has a vague resemblance to a **sombrero** with a tall peak, so this model of the receptive field is sometimes called "**Mexican-hat model**."

When the spatial profiles of center and surround mechanisms can be described by **Gaussian** functions the model is referred to as the "**difference-of-Gaussians**" model.
3-D depiction of 2-D on-center response
(“sombrero hat”)

[Image: 3-D depiction of 2-D on-center response ("sombrero hat")]
Possible Applications

- Face recognition
- Odor sensing
- Color image classification
- Time series applications, forecasting
Modeling

- \(\varphi_i(x) = G(\| x - c_i \|) \)

where \(G \) decreases away from 0 and \(c_i \) is the center.

- Example: Gaussian:

\[
G(y) = \exp(-y^2/\sigma^2)
\]

where \(\sigma \) is a parameter called the spread, which indicates the selectivity of the neuron.
Other RBF Examples

- $G(y) = 1/\sqrt{y^2 + \sigma^2}$
- $G(y) = 1/(1+\exp(ay^2))$ “reflected sigmoid”
Spread = $\frac{1}{\text{Selectivity}}$

Small Spread, very selective

Large Spread, not very selective
Radial Basis Function (RBF) Network: 2 Layers Only!

\[\phi_1 \phi_2 \phi_n \]

\[\sum \]

Inputs \(x_1, x_2, \ldots, x_m \)

Output

pure linear activation function

RBF’s \(\varphi_1, \varphi_2, \varphi_n \)

Adjustable weights \(w_i \) (\(w_0 = \text{bias} \))

Adjustable \textbf{centers} \(c_i \)

Adjustable \textbf{spreads} \(\sigma_i \)
Radial Basis Function (RBF) Network in terms of Receptive Fields

Output = \sum w_i \varphi_i(x) where x is the input vector

Typical data point (in 2 dimensions)

Receptive Fields
Given a set of data, the weights, centers, and spreads need to be determined for the best fit.

Approaches:
- Solving for all parameters
- Determining centers and spreads by clustering, then training weights
- Training for centers, spreads, and weights
The approaches mentioned assume a specified number of hidden-layer nodes.

Another approach is to add nodes successively, until the approximation is good.

In the limit, this might be one node per training pattern.
Example: xor

- How to choose parameters to realize xor with 2 unit RBF?
- Since output of an RBF is *linear*, would need to add a **limiter** to the general RBF.
Example: xor

Choose centers at (1, 0), and (1, 0). Choose spreads as, say 0.1, find weights.
Consider the nonlinear functions to map the input vector \mathbf{x} to the $\varphi_1 - \varphi_2$ space:

$$
\varphi_1(\mathbf{x}) = e^{-||\mathbf{x} - \mathbf{t}_1||^2} \\
\varphi_2(\mathbf{x}) = e^{-||\mathbf{x} - \mathbf{t}_2||^2}
$$

$\mathbf{x} = [x_1 \ x_2]$
$\mathbf{t}_1 = [1 \ 1]^T$
$\mathbf{t}_2 = [0 \ 0]^T$
Example: 1D Function Approx. using RBF

\[\sum w_i \varphi_i(x) \]
Matlab demorb1 input
Matlab demorb1 function

Here all spreads = 1.
demorb3: spreads too small, poor network generalization

Here all spreads = 0.01 (vs. 1.0 in previous case).
demorb4: spreads too large, network over-generalization

Here all spreads = 100.
Matlab code for the example in demorb1

P = -1:.1:1;
T = [-.9602 -.5770 -.0729 .3771 .6405 .6600 .4609 ...
 .1336 -.2013 -.4344 -.5000 -.3930 -.1647 .0988 ...
 .3072 .3960 .3449 .1816 -.0312 -.2189 -.3201];

p = -3:.1:3;
a = radbas(p);
a2 = radbas(p-1.5);
a3 = radbas(p+2);
a4 = a + a2*1 + a3*0.5;
plot(p,a,'b-',p,a2,'b--',
p,a3,'b--',p,a4,'m-')
newrb adds neurons to the hidden layer of a radial basis network until it meets the specified mean squared error goal.

The function NEWRB quickly creates a radial basis network which approximates the function defined by P and T. In addition to the training set and targets, NEWRB takes two arguments, the sum-squared error goal and the spread constant.

```matlab
eg = 0.02;  % sum-squared error goal
sc = 1;     % spread constant
net = newrb(P,T,eg,sc);
```

NEWRB, neurons = 0, MSE = 0.176192

To see how the network performs, replot the training set. Then simulate the network response for inputs over the same range. Finally, plot the results on the same graph.

```matlab
plot(P,T,'+');
xlabel('Input');

X = -1:.01:1;
Y = sim(net,X);

hold on;
plot(X,Y);
hold off;
legend({'Target','Output'});
```
Bias-Variance Dilemma

- “Bias-variance dilemma” applies to the choice of spreads.

- ref. Neural and Adaptive Systems, Jose C. Principe, Neil R. Euliano, Curt Lefebvre
RBF Properties

- RBF networks tend to have good **interpolation** properties,

- but not as good **extrapolation** properties as Multi-Level Perceptrons (MLPs).

- For extrapolation, using a given number of neurons, an MLP could provide a much better fit.

- Why?
Training-Performance and Universality

- With proper setup, RBFNs can train in time orders of magnitude faster than backpropagation.

- RBFNs enjoy the same universal approximation properties as MLPs: given sufficient neurons, any reasonable function can be approximated (with just 2 layers).
Haykin, Editions 1-2, section 5.13, gave update formulas for simultaneously training weights, centers, and spreads iteratively using gradient descent. This has become problem 5.8 in Edition 3.
Training for Weights (Haykin)

\[
\text{Error} = \mathcal{E} = \frac{1}{2} \sum_{j=1}^{N} e_j^2 \quad (j \text{ is the sample index})
\]

\[
e_j = d_j - \sum_{i=1}^{M} w_k \varphi\left(\|x_j - t_i\|\right) \quad (i \text{ is the neuron index in the hidden layer})
\]

\[
G \left(\|x_j - t_i\|_C\right) = \varphi\left(\|x_j - t_i\|\right)
\]

\(G\) is for “Green’s Function”
1. **Linear weights (output layer)**
 \[\frac{\partial \mathcal{E}(n)}{\partial w_i(n)} = \sum_{j=1}^{N} e_j(n)G(\| x_j - t_i(n) \|_{C_i}) \]
 \[w_i(n + 1) = w_i(n) - \eta_1 \frac{\partial \mathcal{E}(n)}{\partial w_i(n)}, \quad i = 1, 2, \ldots, m_1 \]

2. **Positions of centers (hidden layer)**
 \[\frac{\partial \mathcal{E}(n)}{\partial t_i(n)} = 2w_i(n) \sum_{j=1}^{N} e_j(n)G'(\| x_j - t_i(n) \|_{C_i}) \Sigma_i^{-1} [x_j - t_i(n)] \]
 \[t_i(n + 1) = t_i(n) - \eta_2 \frac{\partial \mathcal{E}(n)}{\partial t_i(n)}, \quad i = 1, 2, \ldots, m_1 \]

3. **Spreads of centers (hidden layer)**
 \[- \frac{\partial \mathcal{E}(n)}{\partial \Sigma_i^{-1}(n)} = w_i(n) \sum_{j=1}^{N} e_j(n)G'(\| x_j - t_i(n) \|_{C_i}) Q_{ji}(n) \]
 \[Q_{ji}(n) = [x_j - t_i(n)][x_j - t_i(n)]^T \]
 \[\Sigma_i^{-1}(n + 1) = \Sigma_i^{-1}(n) - \eta_3 \frac{\partial \mathcal{E}(n)}{\partial \Sigma_i^{-1}(n)} \]

\(G' \) is the derivative of the “Green’s Function”
Some Wisdom on Training RBFN’s

- *Supervised* training for centers and spreads is reportedly very slow.

- Thus some have taken the approach of computing these parameters by other means and just training for the weights (at worst).
A Solving Approach for RBF

- Suppose we are willing to use **one neuron per training sample point**.

- Choose the N data points themselves as centers.

- Assume the spreads σ_i are given.
A Solving Approach for RBF

- It then only remains to **find the weights**.

- Define $\varphi_{ji} = \varphi(||x_i - x_j||)$ where φ is the radial basis function, x_i, x_j are training samples.

- The matrix Φ of values φ_{ji} is called the **interpolation matrix**.
The interpolation matrix has the property that

\[\Phi w = d \]

where

- \(w \) is the weight vector
- \(d \) is the desired output vector over all training samples (since the samples are both data points and centers).

If \(\Phi \) is non-singular, then we can solve for weights as

\[w = \Phi^{-1}d \]
Solving Approach for RBFNs

- **Micchelli’s Theorem** says that if the points x_i are distinct, then the Φ matrix *will* be non-singular (it is square, by construction).

Non-Square Case

- Having one RBF per training point may be too costly.

- It may also cause over-fitting.
Noise in the training set can be good; it can make the resulting network, which has learned to “average” noise in, more robust.

However, with too many neurons, a network can **over-train** to “learn the noise”.
Regularization by Weight Decay

- Can use the **Weight Decay** method to **prune** an RBF:
 - At each update, a small amount is **deducted** from each weight.
 - Weights that are constantly being updated will end up with a non-0 value, while others will go to 0 and can be **eliminated**.
 - The resulting network is less trained to the noise.

- Weight Decay is a form of “**regularization**”
Selecting Centers by Clustering

- One center per training sample may be over-kill.

- There are ways to select centers as representatives among clusters, given a fixed number of representatives.

- We will give and example, and discuss these further under “unsupervised learning” and competitive methods.
Selecting Centers by Clustering
“k-means clustering”
(MacQueen 1967)

- This determines which points belong to which clusters, as well as the centers of those clusters.

- The desired **number k** of clusters is specified.

- Initialize **k centers**, e.g. by choosing them to be k distinct data points.

- Repeat
 - For each data point, determine which center is closest. This determines each point’s **cluster** for the current iteration.
 - Compute the centroid (**mean**) of the points in each cluster. Make this the centers for the next iteration.

 until centers don’t differ appreciably from their previous value.
“k-means clustering”

- Tries to optimize the SSE of the difference between points and the center of their clusters.

\[E = \sum_{j=1}^{n} \sum_{i=1}^{N} \| x_i - c_j \|^2 \]

- This is a heuristic procedure, and is subject to the usual local minima pitfalls.

- However, it is used quite often.

Improving the Performance of K-Means Clustering Algorithm to Position the Centres of RBF Network
k-means demo

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
Computing weights using fewer centers than points

- We can’t invert the Φ matrix in this case (recall $\Phi w = d$).

- We can find the weight values that minimize the error $\Phi w - d$ using the “pseudo inverse” technique for least squares:

\[
w = (\Phi^T \Phi)^{-1} \Phi^T d
\]

pseudo-inverse of Φ
Pseudo Inverse of a Matrix

Consider an overdetertmined system

\[\sum_{j=1}^{n} X_{ij} \beta_j = y_i, \ (i = 1, 2, \ldots, m), \]

of \(m \) linear equations in \(n \) unknown coefficients, \(\beta_1, \beta_2, \ldots, \beta_n \), with \(m > n \). This can be written in matrix form as

\[X\beta = y, \]

where

\[
X = \begin{pmatrix}
X_{11} & X_{12} & \cdots & X_{1n} \\
X_{21} & X_{22} & \cdots & X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{m1} & X_{m2} & \cdots & X_{mn}
\end{pmatrix}, \quad \beta = \begin{pmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_n
\end{pmatrix}, \quad y = \begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_m
\end{pmatrix}.
\]

http://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
Pseudo Inverse of a Matrix

A system usually has no solution, so the goal is instead to find the coefficients β which fit the equations "best," in the sense of solving the quadratic minimization problem

$$\hat{\beta} = \arg\min_{\beta} S(\beta),$$

where the objective function S is given by

$$S(\beta) = \sum_{i=1}^{m} \left| y_i - \sum_{j=1}^{n} X_{ij} \beta_j \right|^2 = \| y - X\beta \|^2.$$

i.e. minimize the MSE

A justification for choosing this criterion is given in properties below. This minimization problem has a unique solution, provided that the n columns of the matrix X are linearly independent, given by solving the normal equations

$$(X^TX)\hat{\beta} = X^Ty.$$

Consider an overdetermined system

$$\sum_{j=1}^{n} X_{ij} \beta_j = y_i, \ (i = 1, 2, \ldots, m),$$

of m linear equations in n unknown coefficients, $\beta_1, \beta_2, \ldots, \beta_n$, with $m > n$. This can be written in matrix form as

$$X\beta = y,$$

where

$$X = \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m1} & X_{m2} & \cdots & X_{mn} \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}.$$
Once centers are known, spreads can be set, e.g. by selecting the average distance between center and the closest points in the cluster (e.g. $c = 5$).
Example: matlab newrb

NEWRB(PR,T,GOAL,SPREAD,MN,DF) takes these arguments,
 P - RxQ matrix of Q input vectors.
 T - SxQ matrix of Q target class vectors.
 GOAL - Mean squared error goal, default = 0.0.
 SPREAD - Spread of radial basis functions, default = 1.0.
 MN - Maximum number of neurons, default is Q.
and returns a new radial basis network.

The larger that SPREAD is the smoother the function approximation
will be. Too large a spread means a lot of neurons will be
required to fit a fast changing function. Too small a spread
means many neurons will be required to fit a smooth function,
and the network may not generalize well. Call NEWRB with
different spreads to find the best value for a given problem.
Method of newrb

Initially the RBF layer has no neurons. The following steps are repeated until the network's mean squared error falls below GOAL.

1) The network is simulated.

2) The input vector with the greatest error is found.

3) A RADBAS neuron is added with center equal to that vector.

4) The PURELIN layer weights are redesigned by solving a set of linear equations.
A “Probabilistic” Neural Network (PNN) is the name given to a radial-basis function network modified for classification purposes.

The linear output layer is followed by a competitive layer which makes a classification based on the RBF unit with the largest output.
Competitive Layer: Selects highest Σ

Σ Σ Σ

ϕ_1 ϕ_2 ϕ_n

RBFN’s
P = [1 2; 2 2; 1 1]'; T = ind2vec([1 2 3]);
net = newpnn(P,T,spread);
demopnn1 classification regions defined by training data

original training points (blue)

new test point (red), classified as 2

vec2ind(sim(net, P))
ans = 1 2 3

vec2ind(sim(net, [2; 1.5]))
ans = 2
GRNN’s

- Generalized Regression Neural Networks is another class that subsumes both RBFs and PNNs.
- They can be explained based on statistical estimation theory (Bayesian).
Blue are Training Points
P = [1 2 3 4 5 6 7 8];
T = [0 1 2 3 2 1 2 1];
spread = 0.7;
net = newgrnn(P,T,spread);
A = sim(net,P);

Red is Network response to new Inputs P2
P2 = 0:.1:9;
A2 = sim(net,P2);
Related Topic to GRNN

- Support Vector Machines (SVMs) to be discussed
MLP vs RBF Case Studies
(source: Yampolskiy and Novikov, RIT)

<table>
<thead>
<tr>
<th>Source</th>
<th>Application</th>
<th>MLP</th>
<th>RBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dong</td>
<td>Satellite image classification</td>
<td></td>
<td>Faster runtime</td>
</tr>
<tr>
<td>Finan</td>
<td>Speaker recognition</td>
<td></td>
<td>More accurate, less sensitive to bad training data</td>
</tr>
<tr>
<td>Hawickhorst</td>
<td>Speech recognition</td>
<td></td>
<td>Faster training, better retention of generalization</td>
</tr>
<tr>
<td>Li</td>
<td>Surgical decision making</td>
<td>Fewer hidden nodes</td>
<td>Shorter training time, lower errors</td>
</tr>
<tr>
<td>Lu</td>
<td>Channel Equalization</td>
<td>Statistically insignificant differences</td>
<td></td>
</tr>
<tr>
<td>Park</td>
<td>Nonlinear system identification</td>
<td></td>
<td>Better convergence to global min., less retraining time</td>
</tr>
<tr>
<td>Roppel</td>
<td>Odor recognition</td>
<td>Higher identification rates</td>
<td></td>
</tr>
</tbody>
</table>
Face Recognition Case Study
(Powell, et al. at University of Sussex)

- **Database**
 - 100 images of 10 people (8-bit grayscale, resolution 384 x 287)
 - for each individual, 10 images of head in different pose from face-on to profile
 - Designed to assess performance of face recognition techniques when pose variations occur
Sample Images (different angles)
Approach: Face-unit subnets

- Each of a set of RBF sub-networks is trained to **recognize a single person**.

- Training uses examples of images of the person to be recognized as positive evidence, together with selected confusables images of other people as negative evidence.
Network Architecture

- Input layer contains $25 \times 25 = 625$ inputs which represent the pixel intensities (normalized) of an image.

- Hidden layer contains $p + a$ (pro + anti) neurons:
 - pro-neurons (receptors for positive evidence)
 - anti-neurons (receptors for negative evidence)

- Output layer contains two neurons:
 - One for the particular person.
 - One for all the others.

The output is “discarded” (discounted) if the absolute difference of the two output neurons is smaller than a parameter R.
Parameters

- **Centers:**
 - of a pro neuron: the corresponding positive example
 - of an **anti neuron**: the negative example which is **most similar to the corresponding pro neuron**, with respect to the Euclidean distance.

- **Spread**: average distance of the center vector from all other centers. If \(\alpha, h \) hidden nodes, \(H \) total number of hidden nodes then:
 \[
 \sigma_a = \frac{1}{H\sqrt{2}} \sum_h \| t^\alpha - t^h \|
 \]

- **Weights**: determined using the **pseudo-inverse method**.

- A RBF network with 6 pro neurons, 12 anti neurons, and \(R \) equal to 0.3.

- **Results:**
 - Discarded 23 percent of the images of the test set.
 - Correctly classified 96 percent of the non-discarded images.